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Abstract

In [9] we have argued for a representation of processes taking into
account computationally relevant morphisms. It has been shown that
the category of synchronous processes, modulo strong bisimulation, with
the bisimilarity preserving simulations, is isomorphic with a particular
subcategory of transition systems with graph morphisms.

In the present paper, we extend this representation to asynchronous
processes, modulo the weak and the branching bisimulations and congru-
ences. They are shown to correspond to further interesting subcategories
of the category of transition systems. The form of the representatives in
the case of the branching bisimilarity suggests possible connections with
game theory. An abstract construction of a category of processes in a
general setting is presented in the appendix.

1 Introduction

As a first approximation, processes are presented as directed graphs of states and
transitions: a computation is a directed path of transitions, a run from state to
state, starting from the initial one. The transitions are labelled by the actions taken.

However, many different graphs remain indistinguishable when only such runs
are observed. The computationally irrelevant properties of graphs are factored out
by defining processes as classes of observationally equivalent, bisimilar graphs. But
large classes of graphs are not very convenient to work with, and one tries to pick
a canonical representative from each of them. This boils down to extracting a class
of graphs that display only the computational behaviour of a process, free of geo-
metric redundancies. In [9], we have described a category of irredundant transition
systems, which couniversally represent synchronous processes, i.e. strong bisimilar-
ity classes. The treatment is now extended to asynchronous processes, induced by
weaker notions of bisimilarity. Such representations are necessary for logical studies
of processes [10]. The new task will be reduced to the previously solved one. In each
weaker bisimilarity class we shall find a strong subclass, in fact a retract, for which
we already have a representative. This retraction is worked out in section 3, after the
categorical framework needed for it has been introduced in section 2 (based on a uni-
versal construction frome the appendix). The actual representation of asynchronous
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processes is in 4, while 5 outlines modifications needed for capturing processes with
respect to the generated congruences.

2 From graphs to processes

We begin with the category of reachable transition systems, as described in [9]. The
only additional feature is the distinguished label τ ∈ Σ, denoting silent actions [7,
sec. 2.3]. It has no reprecussions for the category, but allows conceptual refinements,
leading to richer notions of (bi)simulation and of process. While the strong bisimula-
tions [8, 7] take all actions into account, the weak (or observational) equivalence [4, 7]
discards the silent actions from the output, and only takes their power to preempt
other actions into account. However, it evens out different trees of silent actions,
and remains too crude for some situations. The suitable refinement is the notion of
branching bisimulation [3, ch. 3], which fully respects the branching structure of a
process, including its silent parts. We shall now align the three notions formally, and
derive three categories of processes.

To analyse them in categories, we shall treat bisimulations as internal full binary
relations in various categories of transition systems. An internal relation between
transition systems P and Q consists of a binary relation on their states and a binary
relation on their transitions. The former always relates the initial states. The latter
only relates transitions with the same label. Finally, whenever two transitions are
related, their source states must also be related, as well as their target states. An
internal relation is full if the converse holds as well: two transitions are related if
and only if they have the same label, and related sources and targets. Obviously,
such a relation is completely determined by its state component. Our categorical
bisimulations are thus equivalent to the original ones, which are just relations on
states (given in terms of transitions).

As usually, x
a
→ x′ denotes a transition, or the statement that it exists; x0

∗
→→ xn

abbreviates a silent run x0
τ
→ x1

τ
→ x2

τ
→ · · ·

τ
→ xn of length n ≥ 0. An empty run

x0

∗
→→ x0.

Definition 2.1 An internal relation P ← R → Q in the category of transition
systems is a strong simulation if it satisfies

x
a
→ x′ ∧ xRy =⇒ ∃y′. y

a
→ y′ ∧ x′Ry′ (1)

x
a
→ x′ ∧ xRy

∧y
a
→ y′ ∧ x′Ry′

}
=⇒

(
x

a
→ x′

)
R
(
y

a
→ y′

)
(2)

for all states x, x′ ∈ P and y ∈ Q. It is a weak [resp. branching] simulation if it
satisfies (2) and

x
a
→ x′ ∧ xRy =⇒ ∃uu′y′. y

∗
→→ u

a
→ u′ ∗

→→ y′ ∧ x′Ry′
[
∧xRu ∧ x′Ru′

]
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∨
(
a = τ ∧ x′Ry

)
(3)

A strong (resp. weak, branching) bisimulation is a strong (weak, branching)
simulation P ← R→ Q such that the dual Q← Ro → P is a strong (. . . ) simulation
too. The transition systems P and Q are strongly (. . . ) bisimilar if there is a strong
(. . . ) bisimulation between them. The strong, weak and branching bisimilarities are
respectively denoted by ∼, ≈ and ≅.

In pictures, the above definitions say that each span

x

R

//
a
x′

y

extends to

x

R

//
a
x′

R

y //
a
y′

in the strong case, (4)

to

x

R

//
a
x′

R

y //
∗
// u //

a
u′ //

∗
// y′

or

x

R

//
a=τ

x′

R

y

in the weak case, (5)

and to

x

R

//
a

R

x′

R

y //
∗
// u //

a
y′

or

x

R

//
a=τ

x′

R

y

in the branching case.(6)

Note that omitting u′ in the branching case does not change anything: one can always
take u′ = y′.

These notions now induce three poset-enriched categories, with the reachable
transition systems as objects and the simulations as morphisms. Restricting to the
sober simulations, we get the categories C∼, C≈ and C≅, to which we apply the
construction from the appendix, and get the categories of processes P∼, P≈ and P≅.
The components of the families ∼, ≈ and ≅ are in each case the largest bisimulations.

Let us sumarize what the obtained categories of processes look like. For any
family of arrows/equivalence relation ψ ∈ {∼,≈,≅}, the objects of Pψ are the ψ-
bisimilarity classes of reachable transition systems. Given two such classes, Π and
Θ, a morphism Π← Ξ→ Θ in Pψ will be a class

Ξ = {P ← R→ Q|P ∈ Π, Q ∈ Θ} ,

of ψ-simulations, such that for any P ← R→ Q and P′ ← R′ → Q′ holds

xψx′ ∧ xRy ∧ yψy′ =⇒ x′R′y′ (7)

xψx′ ∧ xRy ∧ x′R′y′ =⇒ yψy′ (8)

for all x ∈ P, y ∈ Q, x′ ∈ P ′, y′ ∈ Q′. Respectively, these conditions say that Ξ is
saturated and sober. The latter says that the components of Ξ jointly preserve the

3



ψ-bisimilarity, i.e. take the computationally equivalent states to the computationally
equivalent ones. The saturation condition, on the other hand, says that if x and y
are related, then everything equivalent to x must be related to everything equivalent
to y. The formal consequences of these conditions are explained in the appendix. See
also section 2.3 of the first part.

The obvious implications (4)⇒(6)⇒(5), induce the quotient functors P∼ →
P≅ → P≈. Note however, that the morphisms will fit only if the implications ∼-
sober⇒≅-sober⇒≈-sober are valid as well. This is not immediate, but it will follow
from proposition 3.2.

3 Relating simulations

In [9], we have described a subcategory I of irredundant transition systems, and
shown that it is strongly equivalent with P∼. In fact, its skeleton is even isomorphic
with P∼. By definition, an irredundant transition system must be reachable, and
such that x ∼ x′ implies x = x′ for any pair x, x′ of states. This irredundant
representation, known in many forms, is actually universal in a formal sense [9,
sec. 5].

This picture of P∼ will now be used for representing P≈ and P≅. A transition
system P will be transformed into transition systems WP and BP , weakly resp.
branching bisimilar to P , and such that the weak resp. the branching simulations to
and from P exactly correspond to the strong ones on WP resp. BP . The idea how
for such WP and BP follows from (4), (5) and (6). To reduce (5) to (4), we must

add in WP a transition x
a
→ x′ whenever a path x

∗
→→ v

a
→ v′

∗
→→ x′ occurs in P ; and

a transition x
τ
→ x for every state x. The obtained transition system WP is thus the

closure of P under the “composition” with τ -transitions.

The construction of BP is bound to be more complicated, since it must expand
the trapezoid from (6) into two squares (4). The idea is that the transition x

c
→ x′,

c 6= τ , should be expanded in two new transitions, corresponding to y
∗
→→ u, and

u
c
→ y′ respectively. Moreover, τ should be “closed under composition” with itself.

The construction B itself will thus be the composite of the constructions C and D,
where

• C replaces each x
c 6=τ
−→ x′ with x

τ
→

(
c
x
�
x′

)
c
→ x′, where

(
c
x
�
x′

)
is a new state;

while
• D adds x

τ
→ x′ whenever there is a path x

∗
→→ x′.

All the described constructions induce endofunctors on the category of reachable
transition systems. W and D are moreover idempotent monads, while C extends a

comonad G, which for all x
c 6=τ
−→ x′ adds

(
c
x
�
x′

)
c
→ x′ but not x

τ
→

(
c
x
�
x′

)
. The units

η : P → WP and η : P → DP are given by the identity maps on the states, and
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the inclusions on the transitions. The counit ε : GP → P maps both x and
(
c
x
�
x′

)

to x, the transitions
(
c
x
�
x′

)
c
→ x′ to x

c
→ x′, and each τ -transition to itself. These

data now provide a weak bisimulation P
id
← P

η
→ WP and a branching bisimulation

P
ε
← GP ֒→ CP

η
→ DCP = BP . This is proved simply by the inspection of

definitions.

Proposition 3.1 For every reachable transition system P , the equality relation on
the states yields a weak bisimulation between P and WP . A branching bisimulation
between P and BP is obtained by extending the equality on the states of P with the

pairs of the form
〈
x,

(
c
x
�
x′

)〉
.

Since a simulation is determined by its state component, andW does not change
the states, the W -image of a full relation P ← R → Q can be defined as the full
relation WP ← WR → WQ induced by the state component of the original. The
B-image, on the other hand, will be the full relation BP ← BR → BQ spanned by
the state component of P ← R→ Q extended on the new states by

(
c
x
�
v

)
BR

(
d
y
�
u

)
⇐⇒ c = d ∧ xRy ∧ vRu. (9)

In this way, we get enriched functors W : C≈ −→ C∼ and B : C≅ −→ C∼, which turn
out to be full and faithful, as a consequence of the following proposition.

Proposition 3.2 A full relation P ← R → Q on reachable transition systems is a
weak simulation if and only if WP ← WR → WQ is a strong simulation. It is a
branching simulation if and only if BP ← BR→ BQ is a strong simulation.

Proof. We only prove the second statement, since the weak case is straightforward.

(⇒) Assuming that P ← R → Q satisfies (6) we derive that BP ← BR → BQ
satisfies (4). In BP , there are clearly three kinds of transitions to be simulated:

(i) x
τ
→ x′, or

(ii) x′ τ
→

(
c
x
�
v

)
, or

(iii)
(
c
x
�
v

)
c
→ v,

where x, x′ and v are old states, coming from P , while c 6= τ .

To discuss (i), suppose xRy. Since R is a branching simulation, there is y
∗
→→ y′

in Q, with x′Ry′. Hence y
τ
→ y′ in BQ.

Towards case (ii), note that in CP , the state
(
c
x
�
v

)
can only be reached through

x. The transition x′
τ
→

(
c
x
�
v

)
thus comes in BP from a path x′

∗
→→ x

τ
→

(
c
x
�
v

)
in CP .

On the other hand, x
τ
→

(
c
x
�
v

)
comes from x

c
→ v in P . So there must have been

x′ ∗
→→ x

c
→ v in P . Given x′Ry′, the assumption that R is a branching simulation
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yields y′
∗
→→ y

∗
→→ u

c
→ w in Q, with xRy, xRu and vRw. But the transition u

c
→ w

from Q becomes u
τ
→

(
c
u
�
w

)
c
→ w in CQ. The path y′

∗
→→ y

∗
→→ u

τ
→

(
c
u
�
w

)
in CQ now

induces y′
τ
→

(
c
u
�
w

)
in BQ. This transition simulates x′

τ
→

(
c
x
�
v

)
, since by (9), xRu

and vRw imply
(
c
x
�
v

)
BR

(
c
u
�
w

)
.

Finally, for case (iii), suppose
(
c
x
�
v

)
BR z. By the definition of BR again, the

state z must be in the form
(
c
u
�
w

)
, for some u,w with xRu and vRw. The transition

(
c
x
�
v

)
c
→ v is thus simulated by

(
c
u
�
w

)
c
→ w.

(⇐) Now assume that BP ← BR→ BQ is a strong simulation, and take x
a
→ x′ in

P , with xRy. If a = τ , (4) gives y
τ
→ y′ in BQ, with x′Ry′. Hence y

∗
→→ y′ in Q. If

this is an empty path, and y = y′, we have the triangle from (6); otherwise we have
the trapezoid.

If a = c 6= τ , the transition x
c
→ x′ becomes x

τ
→

(
c
x
�
x′

)
c
→ x′ in BP . Since BR

is a strong simulation, this is simulated by y
τ
→ z

c
→ y′ in BQ, with

(
c
x
�
x′

)
BR z and

x′BRy′. By the definition of BR, y′ must be a state from Q, such that x′Ry′, while

z must be in the form
(
c
u
�
y′

)
, for some Q-state u with xRu. As pointed out before,

the transition x′
τ
→

(
c
u
�
y′

)
in BQ must have originated from x′

∗
→→ u

τ
→

(
c
u
�
y′

)
in CQ.

In Q, there is thus x′
∗
→→ u

c
→ y′, with xRu and x′Ry′, just as required by (6). This

completes the proof. �

The construction W induces a poset isomorphism between the weak simulations
from P to Q and the strong simulations from WP to WQ, because the state com-
ponent of WP ← WR → WQ is the same as the state component of P ← R → Q
again. Therefore, W is a full and faithful enriched functor from the category of weak
simulations to the category of strong simulations. Since two states in P are weakly
bisimilar if and only if they are strongly bisimilar in WP , the functor W preserves
and reflects the sobriety, and thus restricts to a full and faithful enriched functor
W : C≈ → C∼.

A similar reasoning leads to the same conclusion for B : C≅ → C∼. The fullness
may seem not as obvious this time, though. But note that the sources of the transi-

tions labelled by c 6= τ in BP are always the new states
(
c
x
�
x′

)
; and that all of them

appear as such sources. Hence, a strong simulation from BP to BQ must relate the
new states among themselves. It must further satisfy (9) — and thus appear in the
form BR for some P ← R→ Q.
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4 The representation

The described functors on the categories of simulations now induce the full and
faithful functors W : P≈ → P∼ and B : P≅ → P∼. Proposition 3.1 implies that
they are right inverse, respectively, to the quotient functors P∼ →→ P≈ and P∼ →
→ P≅. Although the construction B on transition systems was not idempotent,
the endofunctor that it induces on P≈ is. P≅ and P≈ are thus retracts of P∼; the
latter is even a reflective subcategory. They are thus also retracts of the category
of reachable transition systems and sober morphisms, since P∼ can be viewed as its
reflective category (cf. sec. 5 of the first part [9, sec. 5]). This is based on presenting
P∼ as the skeleton of the category I of irredundant transition systems [9, thm. 4.4].

Our next task is characterising the retracts of I corresponding to P≈ and P≅.
They are spanned by the images of the constructions W and B on I. The scheme of
the representation is:

P Roo // Q P Roo // Q

≈

OO

��

≈

OO

��

≅

OO

��

≅

OO

��

WP WRoo // WQ BP BRoo // BQ

∼

OO

��

∼
OO

��

∼

OO

��

∼
OO

��

W̃P W̃R
// W̃Q B̃P B̃R

// B̃Q

(10)

The upper squares depict the contents of the previous section: the vertical bisimula-
tions are those from proposition 3.1, while 3.2 relates the horizontal sober simulations.

The lower squares are from [9, sec. 5]. The functor (̃−) assigns to each reachable
transition system its irredundant quotient, and to each sober ∼-simulation a graph
morphism. Although I is not closed under W or B, direct inspection of the defini-

tions of W and B shows that their images are closed under (̃−). The representatives

W̃P and B̃P will thus be in the following forms.

Definition 4.1 A transition system is τ -replete if whenever there is a path x
∗
→→ y,

there is also a transition x
τ
→ y in it. It is c-replete, for c 6= τ if every path

x
∗
→→ u

c
→ v

∗
→→ y in it can be “shortcut” by a transition x

c
→ y. The replete

transition systems are a-replete for all a ∈ Σ. The irredundant replete transition
systems span the subcategory I≈ of I.

A τ -strategy is a transition system in which the source of a visible transition
is always the target of exactly one transition, necessarily silent. In other words, if

y
c 6=τ
−→ z, then there is x

τ
→ y, and no other transitions to y. Irredundant, τ -replete

τ-strategies span the subcategory I≅ of I.

Theorem 4.2 Pψ ∼= Iψ , where ψ ∈ {≈,≅}.
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Remarks. In a way, the repleteness embodies asynchrony: any action action can
be delayed by idling, and any action that can be taken after some idling can also
be taken immediately. However, such “shortcuts” may erase a part of the branching
structure. In a τ -strategy, this is prevented by separating visible actions from each
other by silent actions. The idea behind its name is that each visible move is given
a unique silent response. The game is played towards the initial state, which can be
thought of as the final position. The side which plays a last move, wins. The silent
side wins using the τ -strategies.

Regardless of the relevance of this game theoretic picture, the point of the τ -
replete τ -strategies is to allow waiting to be extended at will, or reduced to one silent
step — but not completely eliminated. The branching structure is protected from
these deformations by keeping the visible and the silent layers of actions separated.

5 Congruences

Finally, let us turn to a conceptual shortcoming of the weak and the branching
bisimilarities: they are not congruences with respect to all of the process operations.
In particular, the nondeterministic sum + does not preserve them [7]. Fortunately,
the reason for this turns out to be localized at the initial state. Bergstra and Klop [2]
have observed that rooted bisimulations — where the initial states are only related
with each other — are always preserved under +. The following lemma is probably
folklore.

Lemma 5.1 A (strong, weak, branching) simulation P ← R → Q is rooted if and
only if the relations P +M ←− R +M −→ Q +M are (. . . ) simulations for all
transition systems M .

Although simple and elegant, the root condition is not well suited for categorical
treatment. However, there is a weaker condition, due to Milner [7, ch. 7, def. 2],
which yields the same processes as the rooted bisimulations, and is easily captured
in categories. It requires that a transition in the form ι

τ
→ x′ is never simulated

by an empty path. The simulations satisfying this requirement may not be rooted,
hence they are not stable under sums; but if there is a bisimulation between P and
Q satisfying Milner’s requirement, then a rooted one must exist as well. Roughly,
the only reason why it may be impossible to simply drop a pair 〈x, ι〉 (or 〈ι, y〉) from
a bisimulation is that the only transition simulating ι

τ
→ x (or ι

τ
→ y) may be ι

τ
→ ι.

The following definition thus yields processes as the rooted bisimulations. Similarly,
the induced process morphisms do not consist of rooted simulations, but each of
them contains rooted components (e.g., the tree morphisms), and this suffices for
+-stability.
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Definition 5.2 A relation P ← R→ Q in AΣ is a ι-weak [ι-branching] simulation
if it satisfies

x
a
→ x′ ∧ xRy =⇒ ∃uu′y′. y

∗
→→ u

a
→ u′ ∗

→→ y′ ∧ x′Ry′
[
∧xRu ∧ x′Ru′

]

∨
(
x 6= ι ∧ a = τ ∧ x′Ry

)
(11)

and (2). A weak [branching] congruence is a ι-weak [ι-branching] simulation, the dual
of which is ι-weak [ι-branching] simulation as well.

The ι-weak and ι-branching simulations differ from the weak and the branching
ones only by the underlined part of (11); the rest is exactly like (3). The ι-simulations
can thus be analyzed along the same lines as the ordinary ones — just slightly
modifying the constructions W and B. Namely, everything remains the same, but
no τ -cycles x

τ
→ x must be added at x = ι. On the representatives, this exception is

expressed simply by restricting the τ -repleteness at the root.

6 Future work

The main point of our approach is to capture processes dynamically, in a category,
with computation preserving morphisms. Concurrency may have sailed well without
such morphisms, but the forest of its operations looks more and more like tensor
calculus in the time when it was based on bright physical intuitions, but the universal
property of the tensor product had not yet been understood.
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Appendix A: Quotient of a poset-enriched category

Let C be a poset-enriched category and Ψ a composition closed family of arrows in
it, at most one from each hom-poset. Write PψQ for the Ψ-arrow from P to Q. It
is further required that Ψ contains for each P ∈ C an endomorphism PψP , greater
than idP ; and also an arrow QψP whenever there is PψQ in it. The family Ψ can
thus be construed as an equivalence relation ψ on the objects of C, realized by its
arrows.

We want to form a quotient category P = C/Ψ. The objects should be the ψ-
equivalence classes of objects from C, the morphisms — the families of ψ-equivalent
arrows between their elements. Here the equivalence boils down to the requirement
that all components of such a family of arrows can be obtained by extending any of
them along ψ, just like any element of an equivalence class determines all of it. This
seems to be a precondition of the existence of the quotient map, a functor C → P .
But it is not hard to satisfy.

Let Π,Θ be some ψ-equivalence classes of objects. A morphism Π Ξ // Θ in

P will now be a class Ξ of arrows P R // Q in C, one for each pair P ∈ Π, Q ∈ Θ,

such that for any R,R′ ∈ Ξ holds ψRψ ⊆ R′, or diagrammatically

P ψoo P ′

R
��

⊆ R′

��

Q ψ // Q′

(12)

This is the saturation condition. Using the above assumptions about Ψ, we get
R′ ⊆ ψR′ψ = ψψR′ψψ ⊆ ψRψ, so that for all components any P-morphism actually
holds

R′ = ψRψ. (13)

In particular, each of them is saturated, i.e. R = ψRψ. At any rate, each component
pins down a P-morphism by formula (13).

The quotient map C → P will, of course, take each object P to its equivalence

class Π, and each arrow P R // Q to the family of arrows P ′ R′ // Q′ , one for

each P ′ ∈ Π and Q′ ∈ Θ, which are obtained as in (13). Clearly, this family will
consist of saturated morphisms, satisfying R = ψRψ. In fact, the image of each
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morphism R along C → P is determined by the saturation R = ψRψ. Clearly,
saturation can be viewed as a functor C → C, where C is the subcategory of C,
consisting of the same objects but only the saturated morphisms. C is the saturation
of C.

To spell out the universal properties of the quotient P and the saturation C, we
shall say that a functor annihilates ψ on objects if it takes any two ψ-related objects
to the same image; that it annihilates ψ on arrows if each R has the same image as
its saturation R = ψRψ; and that it annihilates ψ if it does so both on objects and
arrows.

Proposition .1 The quotient C → P is initial among those that annihilate ψ. The
saturation C → C is initial among those that annihilate ψ on arrows. The induced
functor C → P is full and faithful, and surjective on objects — hence a weak equiva-
lence.

Appendix B: Categories of processes, abstractly

Now we want to focus on situations when C is a category of simulations, while Ψ
consists of maximal bisimulations. The quotient construction should thus yield the
corresponding category of processes.

In order to be able to express some special properties of simulations, one addi-
tional operation will be needed, namely the dualising

(
P R // Q

)
7−→

(
Q Ro // P

)
. (14)

A relation can always be dualized, but the dual of a simulation need not be a simu-
lation. The category C will thus not be closed under dualizing, but we shall assume
that it is couched a “category of relations”, providing the needed operation. For
instance, C can be viewed as a poset-enriched subcategory of an allegory or of a
cartesian bicategory.

There are two additional requirements that need to be imposed on the arrows
of C. Firstly, each of them should be total, or formally:

id ⊆ RRo. (15)

Furthermore, they should all preserve the bisimilarity: indeed, a sound computational
morphism should preserve computational equivalence [9, sec. 2.3]. Formally, this
means that all R ∈ C should satisfy the sobriety condition

RoψR ⊆ ψ. (16)

But this is easily enforced: in specific cases, we simply restrict consideration to the
sober simulations.
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A poset-enriched category C with total and sober morphisms can be construed as
an abstract category of simulations. Remarkably, the enrichment of such a category
degenerates under saturation: C turns out to be an ordinary category.

Lemma .2 If P R // Q is a sober morphism, its saturation R = ψRψ is sober

too. If, furthermore, all morphisms from P to Q are total, the saturation R is the
largest among them which is both sober and contains R.

Proof. R is sober because R
o
ψR = ψRoψψψRψ = ψRoψRψ ⊆ ψψψ = ψ. For

the second statement, suppose that R̂ ⊇ R is sober. The totality now yields R̂ ⊆
RRoR̂ ⊆ RR̂oR̂ ⊆ RR̂oψR̂ ⊆ Rψ ⊆ ψRψ. �

Corollary .3 The saturation C of an abstract category of simulations C is an ordi-
nary category.

Proof. If R ⊆ R̂, and R̂ is sober, lemma yields R̂ ⊆ R. When R is saturated, this
yields R̂ ⊆ R. �

The quotient P , constructed from a category of simulations by the method from
appendix 6, is an abstract category of processes. The universal properties described
in proposition .1 remain valid. The additional properties make P into an ordinary
category, though, since it is weakly equivalent to C. Another point worth emphasizing
about P is that the bisimilarity is preserved not just by the individual components of
its morphisms, but also jointly, which renders an apparently stronger, global notion
of sobriety.

Proposition .4 If each component of a P-morphism Π Ξ // Θ is sober, then any
two of them R,R′ ∈ Ξ satisfy RoψR′ ⊆ ψ.

P Rooo Q

ψ

��

⊆ ψ

��

P ′ R′ // Q′

(17)

Proof. RoψR′ = RoψψRψ = RoψRψ ⊆ ψψ = ψ �

Conditon (17) is the naturality requirement more suitable for a relational setting
than the ordinary one. When the relations involved in it are total (id ⊆ RRo) and
single-valued (RoR ⊆ id), this condition is equivalent with the usual lax naturality
ψR′ ⊆ Rψ. In general, though, the two are incomparable, and (17) captures the ψ-
preservation. Conditions (12) and (17), fulfilled in each category of processes, were
explained from a computational point of view in [9, sec. 2.3]. A morphism satisfying
them actually induces a partial map between the bisimilarity classes of states at its
domain and codomain. Since all simulations are total by assumption (15), this map
yields an honest morphism of transition systems.
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