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1 SUMMARY  
 
There were two efforts funded under this contract.    The main effort, called CGC herein, 
focused on the automated generation of secure and correct-by-construction concurrent 
garbage collectors, and was funded the DARPA I20 CRASH program.   A related 
seedling effort, called Flex herein, focused on the notion of a self-improving theorem-
prover.    
 
Kernel functions in a system have a privileged position and can be a source of security 
vulnerabilities.  The challenge of this project was to take a clean-slate design approach 
to explore ways to produce kernel functions together with proofs of their safety and 
security.  Our focus was on garbage collection algorithms that work both sequentially 
(stop-the-world collectors) as well as concurrently with an application.  Our approach is 
based on formal specifications of safety and security properties, automated refinement 
to transform high-level specifications down to code, and the emission of proofs during 
the development process.  The technologies that we developed are applicable to broad 
range of problems, and they are being applied and further developed in DARPA 
HACMS and other programs. 
 
We briefly list the highlights of the research and development performed under this 
contract. 
 
(1) Mixed Logical/Algebraic/Coalgebraic Specifications — Specware naturally supports 

the introduction of underspecified types and functions, which is necessary for an 
automated refinement approach.  We found a natural way to specify coinductive 
types and their operators and to refine them to imperative code.  Support for both 
inductive and coinductive types has enabled a far more flexible specification and 
refinement language, and has supported the generation of true system code. 

 
(2) New Transformations — We developed, implemented, and extensively used a suite 

of new transformations that generate correct-by-construction refinements. 
 

• Observer Maintenance — This transformation takes an observer and an 
invariant that characterizes its meaning. It calculates updates codes for each 
transformer that serve to enforce the invariant. 

 
• Observer Refinement — This transformation takes an observer whose 

observation type is abstract and provides a more concrete implementation of 
the type. 
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• finalizeCoinductiveType — This transformation and its  dual 
(finalizeInductiveType) allow us to incrementally add observers  (resp. 
constructors) to a type.  This supports a refinement process where we 
incrementally add constraints to types and their operators.  The 
transformation generates a definition for the type and gives definitions for 
functions that are constrained by coinductive (resp. inductive) axioms. 

 
• Globalize — The coalgebraic style of specification uses linear, or single-

threaded, functions to express the dynamics of a state-changing dynamical 
system (such as a concurrent GC).  The state of the computation is both an 
input parameter and a single output parameter.  The single-threadedness 
allows this transformation to suppress the state parameter and treat it instead 
as a global variable.  From purely functional specifications, we are then able 
to generate idiomatic imperative code. 

 
(3) Proof Emission from Transformations — We pioneered techniques for extending our 

transformations so that they not only generate more concrete specifications, but they 
simultaneously output a checkable proof that the refinement is correct.  Generating 
proof scripts as a by-product of each refinement step is only possible because our 
transformations operate by performing explicit calculations in the domain theory (i.e. 
using domain axioms and theorems).  We generate proof scripts expressed in the 
Isar sublanguage of Isabelle, which can be checked automatically.  For our 
Mark&Sweep collectors we automatically generated over 33,000 lines of proof text, 
which was then proof-checked by Isabelle. 

 
(4) Derivations of Garbage Collectors — We developed metaprograms that 

automatically generate a family tree of the most common classes of garbage 
collectors from a common specification.  For experimental purposes, we wrote a 
program that randomly generates garbage.  

• Mark and Sweep concurrent collectors — We generated a series of 
increasingly efficient versions of Mark&Sweep collectors, both state-the-world 
sequential collectors and concurrent collectors. 

 
• Copying Collectors — We generated a version of the Cheney Copying 

Collector. A key technical innovation was recognizing that the key safety 
property — the collector must ensure that the live graph remains isomorphic 
under its actions — provides a key driver of the derivation process.  The 
necessity to enforce isomorphism of the heap allows us to calculate the 
copying steps of the Cheney Algorithm.  In other words, we can replace 
invention by calculation. 



 3 

 
• Generational Collectors — We generated a generational collector by means 

of a relatively easy modification to the metaprogram for generating a Cheney 
Copying collector. 

 
• Reference Counting — We generated a series of reference count collectors, 

where the key insight was to maintain the reference count as an invariant.  
This allowed the Observer Maintenance transformation to do most of the work 
of calculating updates to the reference count for each node and to trigger 
recycling of dead nodes.  

 
(5) Generator of Imperative & Concurrent Code — We extended our code generators to 

allow the coalgebraic specifications to be translated to idiomatic state-changing 
CommonLisp code.  Efforts to generate idiomatic C code were underway as the 
project concluded. 

 
(6) Demonstrated Software Evolution via Metaprogram Evolution  — One of the 

surprising results of this project was the degree of commonality between the 
metaprograms for the different collector algorithms listed above.  When starting a 
derivation for a new class of collectors (essentially in the order listed above), we 
started with the derivation metaprogram and modified it, rather than starting from 
scratch for each. We found that over 65% of the metaprogram text survived 
verbatim. 

 
Flex Seedling 

We have investigated the idea of building Flex, a self-improving theorem prover. The 
vision is that of an automated theorem prover that can apply transformations 
(optimizations) to itself, timing itself on a test suite and attempting to find sequences of 
transformations that improve its performance. Flex adds automation and self-adaptation 
to the automated refinement technology used in the garbage collection synthesis effort. 
 
We have built a prototype automated theorem prover and demonstrated how various 
transformations lead to performance improvements. We have built prototype 
functionality to automatically generate a potentially large number of transformed 
versions of the prover and to run a set of tests on it. While much remains to be done to 
fulfill the Flex vision, the results we obtained under this seedling are promising. 
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2 INTRODUCTION 
 

2.1 Motivation 
 

The DARPA CRASH program sought to develop a clean-slate approach to producing 
secure host computers, loosely following a biologically-inspired approach.   It addressed 
the broad question: If we could design a host computer with security as a key 
requirement, including all of its hardware and software layers, how would we proceed? 

Kestrel proposed to focus on the correct-by-construction generation of a key component 
of the language runtime of many systems: its runtime memory management or garbage 
collection algorithms.  These algorithms usually run in the OS kernel and have 
privileged access to data.  They have been exploited to leak sensitive information 
(violate implicit confidentiality requirements), and can potentially be used to breach 
integrity and availability requirements. 

A key part of our effort was (1) to generate safe, secure, and performant collectors, and 
(2) to generate proofs as a by-product of the synthesis process, so that certifying 
authorities could independently and efficiently check that the collectors satisfy their 
safety and security properties.   In effect we aimed to generate proof-carrying programs. 

Taking a larger view, the correct-by-construction generation of garbage collectors can 
be seen as an instance of (paves the way toward) the ability to generate critical 
software components in the software stack, together with certification evidence.  The 
technology is applicable to a broad range of problems, and its being applied and further 
developed in DARPA HACMS and other programs. 

2.2 Objective & Hypothesis 

A long-term goal has been to demonstrate that the automated generation and evolution 
of software from requirements-level specifications provides a cost-effective alternative 
(or supplement to) current methodologies for software development.   Benefits of the 
approach include correctness-by-construction, generation of certification evidence in the 
form of proofs, good performance, and productivity gains through automation.   Our 
specific objective in this project has been to demonstrate the feasibility of automating 
the generation of a family of concurrent garbage collectors.  In Section 4 we discuss the 
extent to which our results advance our long-term goal and demonstrate the claimed 
benefits. 
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2.3 What is program synthesis and what is our approach? 

Generally, program synthesis is the automated construction of programs from 
specifications of their intended behavior.    Our approach is deductive and starts with 
the capture of program/system requirements in terms of formal specifications.   The full 
power of higher-order classical logic, as supported in Kestrel’s Specware system 
[SW03], is used to express specifications as first-class entities along with operations for 
structuring, composing and refining them.     

A major distinguishing feature of our refinement approach is that we can calculate each 
of the refinement steps automatically.  Other approaches to refinement (e.g. VDM, B, 
Praxis) rely on the post-hoc verification of manually created refinement steps.  This is 
an expensive process, and it proves difficult to maintain the refinement chain under 
changes in requirements.  While there is a significant upfront investment in building up a 
domain-specific specification for garbage collection (or other domains), the payoff 
comes downstream with the automated generation of families of codes together with 
their proofs.  The amortized cost over the product family and over its lifecycle should be 
dramatically lower than for other approaches to software production.  
 
The synthesis approach that we developed in this project requires user input in two 
parts: (1) formal requirements specification, and (2) a metaprogram. 

The development of correct-by-construction code via a formal refinement process 
has the following form:  

Spec0  ⟸  Spec1  ⟸  …  Specn  ⟸  Code. 
 
The refinement process starts with a specification Spec0 of the requirements on a 
desired software artifact.  Each Speci , for i=0,1,...,n represents a structured 
specification and the arrows ⟸ are refinements.  The refinement from Speci  to Speci+1 
embodies a design decision which narrows down the number of possible 
implementations.  The final step translates the lowest-level specification Specn to code 
in a suitable programming language.  Semantically the effect is to narrow down the set 
of possible implementations of Specn to just one, so specification refinement can be 
viewed as a constructive process for proving the existence of an implementation of 
specification Spec0;  i.e. its consistency. 
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2.4 What is Garbage Collection? 

Many modern programming languages provide support for dynamically allocated 
memory.    In contrast to local variables in a function which can be stack allocated since 
their lifetime is know statically to end when the function returns, dynamic memory is 
allocated from the heap since its lifetime is not, in general, knowable at compile-time.   
This entails the need for a runtime component that tracks objects on the heap to decide 
when they are no longer needed and their memory can be recycled for other purposes.   
This process is called garbage collection and the component is called a garbage 
collector, or simply a collector. 

To work properly, a collector must have access to any part of a computer that can hold 
references (pointers) to the heap, including registers, runtime stacks, and the heap 
itself.    This privileged access makes it a potential source of security vulnerabilities, 
since an attacker that gains control of a collector could access sensitive information, 
corrupt the state of an application, or tie up space and time resources to degrade the 
services that depend on the collector. 

Similar concerns can be stated many components of the operating system kernel.   By 
focusing on the generation of secure and correct-by-construction garbage collectors, 
this project aimed to demonstrate a cost-effective way to produce high assurance 
components in general. 

2.5 Flex Seedling 
2.5.1 Adaptation	
 
A software system can be more resilient and performant if it can automatically adapt its 
own behavior to changing external conditions. The adaptation should take place 
dynamically, while the system is running, as soon as the environmental changes are 
detected. 
 
Currently, automatic dynamic adaptation is typically limited to a few pre-programmed 
parameters that can change in response to external stimuli. A major motivation behind 
Flex is to go significantly beyond that. We envision software that can change its own 
code by applying transformations to itself, where the new code is optimized to the new 
environmental conditions. 
 
Scalable: Proofs increase scalability. We assume bugs and their effects are major 
limiting factors in the scalability of applications. So reducing errors and their effects, via 
proofs, allows growth to larger scale. 
 
Safe Emergent Behavior: Because we have proofs that constrain/limit the behavior of 
the software, we can safely let the system evolve, with little risk of undesired emergent 



 7 

behavior. Of course, proofs help avoid not only “emergent” but also many kinds of 
undesired behavior. 
 

2.5.2 Underlying	Transformation	Technology	
 
Our Flex prototype is based on the same formal specification and automated refinement 
technology described earlier, used for the synthesis of garbage collectors. The starting 
point for adaptation is a full derivation of an implementation from a specification. 
Adaptation is achieved, in the Flex vision, by automatically modifying the derivation 
based on the environmental changes to adapt the system to, and by re-generating a 
new implementation that is optimized to the new situation. 
 
In order to have tighter integration between derivations and proofs, we carried out most 
of our Flex development in a Specware-like extension of the industrial-strength ACL2 
theorem prover [ACL2]. The Specware-like extensions was developed under a separate 
effort: it features specifications and morphisms as described earlier, as well as a 
collection of automated proof-emitting transformations. 
 

2.5.3 Resolution	Theorem	Proving	
 
Flex is a theorem prover based on resolution [Robinson65], a proof procedure that 
underlies some of the world’s best theorem provers. The use of a resolution theorem 
prover for program synthesis was pioneered in [Green69]. 
 
A resolution theorem prover works by refutation: to prove that a conclusion C follows 
from a set of hypotheses H, the theorem prover attempts to derive a contradiction from 
H and the negation of C. Both H and the negation of C are supplied in conjunctive 
normal form, i.e. as a conjunction of clauses, where a clause is a disjunction of literals, 
where a literal is either an atomic formula or the negation of one. For more information 
on resolution and related theorem proving techniques discussed in this report, see 
[Wos00]. 
 
   



3 METHODS, ASSUMPTIONS, PROCEDURES 
 

Our objective was to demonstrate the feasibility of automating the generation of a family 
of concurrent garbage collectors from requirement-level specifications, together with 
correctness proofs.   The overall approach is characterized by formal specifications, 
formal refinements, transformations to generate refinements, proof-emitting 
transformations, and metaprograms.   A key assumption is that it will ultimately become 
practical for system developers to capture their requirements as formal specifications, 
and that the process of transforming those specifications to proof-carrying code can be 
largely automated (with some guidance).  

3.1 General Approach 

The synthesis approach that we developed in this project requires two forms  
of user input: (1) formal requirements specification, and (2) a metaprogram. 
 

 

Figure 1:  Form of a Metaprogram 
Figure 1 shows a metaprogram as a sequence of transformations. The metaprogram is a 
sequence of transformations to be applied to the requirement specification.  The 
transformations are typically drawn from Specware's library.  In a later section, we 
present a collection of new transformations that were developed as part of this project.   
The actual syntax/representation includes parameters to the transformations as well any 
theorems that should be applied.   
 

metaprogram = 
transformation1 ; 
transformation2 ; 
transformation3 ; 
… 
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Figure 2:  Executing a Metaprogram to generate code and proofs 
Specware executes a metaprogram automatically. The effect, illustrated in Figure 2, is to 
sequentially transform the requirement specification into more refined specifications.  
Each transformation embodies some design knowledge, so the effect of applying a 
transformation is to generate (1) a refinement of the input specification into a refined 
specification that incorporates an instance of the transformation's design knowledge, 
and (2) a machine-checkable proof that the output specification is a refinement of the 
input specification.  The metaprogram is then an explicit and formal statement of the 
design content of the generated code. 
 
We would like to emphasize the consequences of this approach with respect to software 
evolution.  Studies of evolution suggest that most changes to systems fall into a small 
number of categories, mainly bug-fixes, additionally requirements, performance tuning, 
and migration.  First, bug fixes are not relevant here since the code is generated with 

requirement 
specification0 

transformation1 

specification1 

proof of correct 
refinement   

spec0 � spec1 

transformation2 

proof of correct 
refinement 

 spec1 � spec2 

specification2 

transformation3 

proof of correct 
refinement 

 spec2 � spec3 

specification3 

… 
code 
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proofs of correctness (although bug fixes to the requirement specification will commonly 
arise).  Second, the addition of requirements is facilitated in our approach because we 
have a formal specification of requirements.  It is much easier to add requirements to a 
specification than to add them at the code level.  Third, performance tuning also has an 
explicit locus in our approach, since it is manifest by extending or modifying the 
metaprogram — either adding new transformations, or modifying how existing 
transformations are applied (e.g. by adding theorems that the transformation can use).  
Finally, migration is often a matter of adapting the metaprogram to suit a new target 
language or platform.  Typically most of the metaprogram is preserved under migration 
with just some of the backend transformations needing to be changed.  In summary, our 
approach, based on formal specification of requirements and the derivation structure via 
a metaprogram, provides good locality for the kinds of changes that arise in software 
evolution.  This fact underlies our claim that this approach is essential to the future of 
Software Engineering. 

3.2 Specifications and Refinement 
 
A specification defines a language and constrains its possible meanings via axioms.  A 
specification is given by a finite collection of type symbols (optionally including a 
definition), function symbols and their signature (optionally including a definition), and 
axioms over the type and function symbols.  We treat predicates as Boolean-valued 
functions.  For purposes of this paper, we focus on first-order specifications (i.e. 
functions do not take functions as arguments), although Specware allows higher-order 
specifications. The deductive closure of the axioms is a theory, so a specification is a 
finite presentation of a theory.   
 
A refinement can be expressed formally via a specification morphism which translates 
the language of one specification into the language of another specification in a way 
that preserves theorems.  Formally, a signature morphism from specification S0 to 
specification S1 is a type-consistent map from the vocabulary of S0 (i.e. its type and 
function symbols) to the vocabulary of S1.  A specification morphism from S0 to S1 is a 
signature morphism that preserves theorems; i.e. that translates each theorem of S0 to 
a theorem of S1.  To establish a specification morphism, it is sufficient to prove that 
each axiom of S0 translates to a theorem of S1. Let Morphism denote the type of 
specification morphisms (or simply morphisms). 
 
Specification S1 is an extension of specification S0 if there is an specification morphism 
S0 → S1 whose underlying signature morphism is injective.  We use importation to 
express extension, allowing the construction of complex specifications.  More generally, 
specifications and their morphisms constitute a co-complete category, where the colimit 
operation provides a general means for constructing complex specifications.   Intuitively, 
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the colimit is the simplest specification that combines given specifications C modulo 
their common structure.   
 
As models of specification S, we admit any structure of sets and functions that interprets 
at least of each type and function symbol in S and that satisfies the function signatures 
and the axioms.  This semantics allows structures for extensions of S to be models of S.  
The denotation of a specification morphism m is a map from models of the codomain of 
m into models of the domain — every model of S1 is mapped to a model of S0.   
 

3.3 Proof-Emitting Transformations 
 
Specification S0 refines to S1 if there is a specification morphism m:S0 → S1.  We refer 
to m as a refinement and a morphism, and in context, S1 as the refinement of S0.  In 
this paper we are interested in rules and techniques for automatically generating 
refinements.  A specification transformation or simply a transformation, is a partial 
function on specifications that generates a refinement: t:Spec → Morphism.  That is, if 
t(S) = m, then m:S→ codomain(m) is a refinement of S. 
 
As discussed in the next section, we developed a set of new transformations that 
support a coalgebraic style of specification, leading towards the generation of 
imperative and concurrent code.   Most of our transformations work by applying a 
sequence of equations  (via rewrite rule) to parts of the given specification.   The chain 
of equations that are applied proves the correctness of the resulting refinement.   We 
developed techniques for saving the equation chain and emitting it as a proof structure 
that can be checked by an external proof checker.  In our case, the proofs are 
expressed in the Isar format of the Isabelle proof assistant.   Isabelle is used to 
automatically check that the emitted Isar proofs are in fact proofs of the refinement proof 
obligations generated by Specware. 
 
The upshot of using proof-emitting transformations is to co-generate both code and 
proof that the code satisfies its specification.   This is in contrast to post-hoc verification 
approaches that seek to prove a program correct after it has been written.   Generating 
proof-carrying code has the advantage that all design information is available to the 
proof generation process as the code is being constructed.  We believe that this is a 
more economical approach to producing certifiably correct software. 
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3.4 Coalgebraic Specifications 
 
Coalgebra is a relatively recent area of mathematical study, which, in a sense, is dual to 
algebra.   It has been attractive as a way to model and reason about infinite and non-
well-founded objects, such as streams and the behaviors of state machines 
[Rutten00,Jacobs97].   It has been a natural unifying foundation for exploring dynamical 
systems, including both discrete and hybrid automata.  Coalgebra also provides a 
natural way to model classes in an Object-Oriented sense and subclass hierarchies. 
 
For our purposes, algebra, via inductive types, provides a foundation for specifying and 
refining finite data, such as Booleans, Natural numbers, Lists, and finite Sets.    
Coalgebra, via coinductive types (aka cotypes), provides a natural foundation for 
specifying and refining stateful and concurrent computation.   It has also proved useful 
for giving a foundation to object-oriented languages and class hierarchies [Jacobs97]. 
 
One of our new approaches in CRASH was to use a mixture of algebraic and 
coalgebraic types in our specifications, and to develop new transformations to handle 
the cotypes. 
 
There is a descriptive vocabulary that goes with cotypes.   Algebraic types are 
characterized by their constructors, which are used inductively to build up terms for all 
values in the type.   The inductive construction allows inductive definitions of functions 
and proof by induction.  In contrast, cotypes are characterized by their destructors, 
which are operations on the cotype that decompose a cotype element into its parts.  
Typically destructors are categorized as observers (which observe an aspect of an 
element) or transformers (which transform an element into another element of the 
cotype).   The iterated destruction of objects of the type give rise to coinductive 
definition of functions and proofs by coinduction. 
 
Here is a generic specification that illustrates the coalgebraic style that we developed in 
this project: 
 

S = spec 
  cotype State 
  op obsA:State-> A 
  op obsB:State-> B 
  op obsC(st:State):C = h(obsA st, obsB st) 
  op f(st:State)(arg:Arg):  
        {st':State| obsA st' = alpha obsA st  
                     & obsB st' = beta  obsB st} 
  op g(st:State)(arg:Arg):  
         {st':State,d:D| obsA st' = gamma (obsA st) arg  
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                            & obsB st' = delta (obsB st) arg 
                                &        d = eps (obsA st) (obsB st) arg} 
end spec 

 
Spec S has two basic (undefined) observers (obsA and obsB), a defined observer 
(obsC), and two transformers/destructors (f and g).   The latter are specified by giving 
coinductive constraints (postconditions) stated as the predicates of a dependent output 
type.  That is, the output type of f is the set of all States st’ such that the obsA 
observation is given by (alpha (obsA st)); i.e. by some function of the old obsA 
observation.   This is a dependent type because it depends on the value of st that is 
bound when the transformer is called.   The types A, B, and C may be algebraic (i.e. 
constructor-based).  The Greek-letter functions (alpha, ...)  capture the effect of the 
transformer on their particular observer. 
 
Here is a simple specification of mutable graphs using this style: 
 

Graph = spec 
  cotype Graph 
  op nodes : Graph -> Set Node 
  op sucs  : Graph -> Node -> Bag Node 
  op addArc (G:Graph)(x:Node,y:Node):  
            {G':Graph |  nodes G' = nodes G 
                            & sucs G' x = insert(y, (sucs G x))} 
  end-spec 

 
Spec Graph introduces an undefined cotype Graph that has two observers, nodes and 
sucs, and one transformer addArc.   All that we know about a Graph is what we can 
observe, which is its current set of nodes and the successors of any given node.   The 
addArc transformer allows us to change a Graph by adding a new arc from node x to 
node y.   The style of specifying the addArc operation is via predicates expressed in 
coinductive form:  the result of adding an arc is completely specified in terms of what 
observations we can make of the new Graph. 
 
Here is a more elaborated specification of mutable graphs that is closer to the form that 
we ultimately settled on in the GC derivations. 
 

Graph = spec 
  cotype Graph 
  type NodeId           % identifiers of Nodes 
  type Index 
  op roots: Graph -> Set NodeId 
  op allindicies: Graph -> NodeId -> Set(Index)     
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  type Arc = Map(Index, NodeId) 
  op src(G:Graph)(n:NodeId) 
  op tgt (G:Graph) (a:Arc):NodeId 
  op nodes : Graph -> Set NodeId 
  op outNodes  : Graph -> NodeId -> Set NodeId 
  op setTgt (G:Graph)(a:Arc)(y:Node):      % swing the arc a to point to y 
            {G':Graph |  nodes G' = nodes G 
                            &  roots G’ = roots G 

      &    tgt G' a = y } 
end-spec 

 
A stateful setting allows values of ``variables'' to vary with changing state. In coalgebraic 
terms, observations of state will vary over time.  This gives rise to the key distinction 
between identity and value: over time the identity of an observation remains stable (is 
preserved) while its value may vary.  This phenomenon is pervasive in everyday life as 
well as in formal contexts; e.g. citizens have a unique identifier for government 
purposes (e.g. their SSN) while the value of the citizen's age and weight, say, varies 
over time.  Similarly in a formal context, an IP address provides a unique identifier for 
Internet purposes, but it refers to (its value may be) a constantly varying local network. 
 
In this style of specification, it is important to begin formalization with an understanding 
of what the observers are, and the distinction of identity versus value.  For a single 
fluent (changing value), a simply observer of state is sufficient.  For a (more or less) 
structured collection of values, an observer that is parametric both on state and unique 
identifiers for the values is needed.  That is, the observer function itself is a unique 
identifier, but if there is a collection of changing values, then an identifier type Id must 
be introduced and an observer that is parametric on Id is introduced to observe 
individuals of the collection.  
 
The behaviors of this system would again be all streams of Graph, induced by 
newGraph and the addArc and setTgt transformers (transition functions).  Other 
observers and transformers will be added as needed. 
 
For example, in a formal specification of mutable graphs, we have the nodes and arcs 
as observable entities.  A specification is required then to have types NodeId and ArcId, 
together with observers that are parametric on those identifier types to yield the current 
values of nodes and arcs. 
 
The transformers are only known via the changes that they make to observations, 
leading to a coinductive style of specification, expressed by coinductive constraints in 
the postcondition of transformers.  
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3.5 Specification of Concurrent Garbage Collectors 

The domain specification of a collector is built up incrementally.  In the previous section 
we presented a fragment of a generic specification for mutable/coinductive graphs.  We 
now extend   Graph to Heap by adding heap concepts: nodes can be roots, and be live, 
dead, supply, and active. 
 

Heap = spec 
  import translate Graph by {Graph +-> Heap} 
  op roots  : Heap -> Set NodeId 
  op supply : Heap -> Set NodeId 
  op active(H:Heap) : Set NodeId =  
       lfp( roots H,  fn(ns:Set NodeId)-> (allOutNodes H ns)) 
 
  op live (H:Heap): Set NodeId =  active H \/ supply H 
  op dead (H:Heap): Set NodeId =  nodes(H) — live(H) 
end-spec 

 
Heap imports the Graph specification and, in the process, renames the cotype Graph to 
Heap.  It introduces new observers of the Heap: the roots, active nodes, live nodes, and 
dead nodes.  The live nodes are the set of nodes that can be reached from registers, 
the stack, and static memory via references.   We omit axioms asserting that all of these 
observe subsets of the current Heap's nodes. 1 
 
Next, we further extend the Heap specification to Collector by adding new observers 
and transformers relevant to collectors. 
 

Collector = spec 
  import Heap 
  op black(H:Heap): {blk:Set NodeId | blk subset (nodes H)} 
 
  op insertBlack(H: Heap)(n:NodeId | n in? nodes H) 
       : {H': Heap |  black  H' = set_insert(n, black H)} 
 
  op deleteBlack(H: Heap)(n:NodeId| n in? black H && n in? nodes H) 
       : {H': Heap |  black  H' = set_delete(n, black H)} 
 
  refine def addSupply(H:Heap)  

                                                             
1 Notation: \/ is set union and — is set difference. 
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                      (n:NodeId | ~(n in? black H)  
                                   && ~(n in? supply H)  
                                   && n in? nodes H) 
    : {H': Heap | black  H' = set_insert(n, black H)} 
 
  op findLive (H:Heap | black H = supply H) : {H':Heap | live H' subset black H' } 
 
  op sweep (H :Heap | live H subset black H):  
           {H':Heap | supply H' = (nodes H — black H) \/ (supply H) 
                        && black H' = empty_set } 
 
  op recycle1(H:Heap): Heap 
        = (let _ = writeLine "GC invoked" in 
           let H1 = findLive H in 
           let H2 = sweep H1 in 
           H2) 
 
  op selectSupply(H:Heap): Heap*Option(NodeId) = 
     (if supply H = empty_set 
        then (let H1 = recycle1 H in 
              if size (supply H1) <= thrashBound H1 
                then let _ = writeLine "memory exhausted!" in 
                        let _ = throw_abort () in 
                        (H1,None) 
              else selectSupply H1) 
      else  selectSupply1 H) 
 
   op selectSupply1(H:Heap | ~(supply H = empty_set)):  
                   {(H',on):Heap*Option(NodeId) | 
                        ex(y:NodeId)( y in? supply H && on = Some y  
                                            && supply H' = set_delete(y, supply H)  
                                             &&  black H' = set_delete(y, black H) 
                   } 
end-spec 

 
Collector imports the Heap specification.  It introduces a key new observer, the black 
nodes which are a computable approximation to the live nodes, and two transformers 
for modifying black.  The color metaphor comes from Dijkstra [Dijkstra78].  findLive is 
specified to make the black nodes be a superset of the live nodes.  Ideally we should 
establish black = live, but in a concurrent setting the best that can be done is to 
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establish black as an upper bound. This implies that the complement of the black nodes 
are guaranteed to be dead nodes.  recycle1 performs one iteration of finding live nodes 
and then returning known dead nodes to the   supply.  selectSupply removes a node 
from supply and returns it. 
 
In a stop-the-world setting, where the mutator is stopped while the collector scans for 
live nodes, it is relatively easy to determine the dead nodes for recycling.    When the 
collector is intended to run concurrently with the mutator, the situation is trickier.  Figure 
3 shows the structure of a rely-guarantee specification for a concurrent collector.     

The collector relies on (or assumes that) its environment monotonically increases dead 
nodes; technically, that every state-changing action of the Mutator satisfies the 
specification  

       CollectorRelyCond (st;State):{st’:State |  dead st ⊆	dead st’ } 

the satisfaction of which is indicated by the cross arc from the Collector’s rely condition 
to the Mutator’s guarantee condition.   

 

Figure 3:  Assume-Guarantee Specification Composition 

 

Conversely, the Mutator relies on (or assumes that) its environment preserves the live 
graph (via isomorphism); technically, that every state changing action of the Collector 
satisfies the specification  

       MutatorRelyCond (st;State):{st’:State |  live st ≅	live st’ } 

the satisfaction of which is indicated by the cross arc from the Mutator’s rely condition to 
the Collector’s guarantee condition.  If the Collector’s rely condition is satisfied by its 

Specifying a Collector 

Collector 

dead � dead’ 

dead � dead’ live � live’ 
� supply’ � dead 

Mutator 

live � live’ 

guarantees guarantees 

relies-on relies-on 

Can prove that 
1.  liveness is stable under Collector operations 
2.  dead nodes increase under Mutator operations  
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environment (i.e. the Mutator) then it guarantees each of its actions preserved the live 
graph (isomorphically) and that the supply nodes in the end state are all dead nodes.  
Conversely, if the Mutators rely condition is satisfied by its environment (i.e. the 
Collector) then it guarantees each of its actions monotonically increase the dead nodes.	

The safety of the composed Mutator + Collector system can be treated more formally as 
follows.    We define a cotype called State that has various observers, including the 
heap as a rooted graph, ghost observers for the live and dead nodes, and others.    
 

   cotype State            % The basic cotype 
   type Transformer = (State -> State) 
   type Observer a  = (State -> a) 
 
   op Graph                 % rooted directed graphs 
   op heap: Observer Graph 
   op live: Observer Graph               % a ghost op: for spec purposes only 
   op dead: Observer (Set NodeId)           % a ghost op: for spec purposes only 
   ... 

 
We also define an equivalence relation on State that abstracts away State observers 
owned by the Collector.  Two states are equivalent if they are observationally equivalent 
to the Mutator, in particular that their live graphs are isomorphic and that the Mutator 
behaves equivalently in equivalent states.   
 

   op stateEquiv infix 20: State -> State -> Bool 
   axiom stateEquivalence is 
     reflexive stateEquiv && transitive stateEquiv && symmetric stateEquiv 
 
   op graphIso infix 20: Graph -> Graph -> Bool 
   axiom graphIsomorphism is 
     fa(G,G') (graphIso G G') = 
              (ex(f:Bijection(Graph,Graph)) G = f G'  

&& (inverse f) G' = G 
&& a in? G = (f a) in? G’) 

 
   axiom graphIso_in_stateEquiv is 
    fa(st1:State,st2:State) st1 stateEquiv st2 => (live st1) graphIso (live st2) 

 
 
It is convenient to define a type of Transformers and (polymorphic) Observers and then 
define subtypes for Collector and Mutator transformers that have desired properties as 
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subtype predicates.   Two key insights are (1) the states are stable under Collector 
operations, and (2) mutator actions form a congruence wrt state equivalence.    We 
specify that any Mutator action must (1) achieve nondecreasing dead nodes, and (2) be 
congruent wrt stateEquiv.    We specify that any Collector action must preserve state 
equivalence. 

 
   type Mut = {m:Transformer |    

fa(st:State) (dead st)  subset  (dead (m st)) 
&& fa(st:State,st':State)  
         (st stateEquiv st') => ((m st) stateEquiv (m st'))}  

 
% The state is stable under Collector actions 
   type Col = {c:Transformer | fa(st:State) st stateEquiv (c st)}  
 
   op mutator  : Mut 
   op collector: Col 

 
Based on the specification above, we formulate and prove the essential safety property 
of a garbage-collecting system: the composed Mutator and Collector simulate the 
behavior of the Mutator alone (up to blocking, see Appendix). 
 
Theorem (Safety):   run(mutator || collector) simulates run(mutator). 
 
Proof: The proof is by coinduction (or induction if we use a constructor for an initial 
state) using the state equivalence as the (bi)simulation relation.  To do so, we consider 
traces of the atomic steps of the mutator and collector interleaved (see Figure 4).   We 
define a trace (aka trail) of a system S as a sequence of alternating states and atomic 
actions of S:  
 

<st0, a0,  st1, a1, st2, a2, … sti, ai, … > 
 
Given a mutator step m preceded and followed by zero or more collector steps, we must 
show that there is a trace of the mutator alone that reflects the action of m. The key step 
is illustrated in the figure below.   Let S1 = run(mutator) and S2 = run(mutator||collector).  
Consider (co)inductively a trace tr1 of S1 that arrives at a state st1 and a trace tr2 of S2 
that arrives at an equivalent state st2.  If tr2 proceeds with a mutator step m preceded 
and followed by zero or more collector steps, we must show that there is a trace of S1 
that reflects the action of m and results in an equivalent state.   
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Figure 4:  Simulation of Mutator by Collector+Mutator 

 
First, since st1 and st2 are equivalent and m is enabled in st2, then it is also enabled in 
st1 — this requires that all observations that inform control decisions made by the 
Mutator are part of the state equivalence.  Consequently, there is some extension of the 
trace prefix of st1 with action m.    Next, we show that the resulting states are 
equivalent: 
 

 
 
where ≅ denotes isomorphism between two graphs.  This means that as the composed 
system S2 simulates S1, step-by-step it preserves isomorphism of the live graph.  
 

3.6 Design Theories and Transformations 
 

In this section, we present a series of novel transformations that generate refinements 
in our GC derivations.  There are three general sources of techniques for generating 
refinements:   
 

(1) Manual Extensions — manually written extension of a specification 
(2) Library Refinements — are applied via a pushout (transformation that invokes 

colimit computation), and   
(3) Transformations — transformations that generate refinements.  

 
As described in Section General Approach, we manually write a metaprogram, also called 
a derivation script, which is an executable sequence of refinement steps applied to an 

It convenient to define a type of Transformers and (polymorphic) Observers and then define sub-
types for Collector and Mutator transformers that have desired properties as subtype predicates.
Two key insights are (1) the states are stable under Collector operations, and (2) mutator actions
form a congruence wrt state equivalence.

(* Mutator actions are

(1) nondecreasing wrt dead nodes

(2) congruent wrt stateEquiv *)

type Mut = {m:Transformer |

fa(st:State) (dead st) subset (dead (m st))

&& fa(st:State,st’:State)

(st stateEquiv st’) => ((m st) stateEquiv (m st’))}

% The state is stable under Collector actions

type Col = {c:Transformer | fa(st:State) st stateEquiv (c st)}

op mutator : Mut

op collector: Col

Based on the specification above, we formulate and prove the essential safety property of a garbage-
collecting system: the composed Mutator and Collector simulate the behavior of the Mutator alone
(up to blocking, see next section).

Theorem (Safety): run(mutator∥collector) simulates run(mutator).

Proof: The proof is by coinduction1 using the state equivalence as the (bi)simulation relation. To
do so, we consider traces of the atomic steps of the mutator and collector interleaved. We define a
trace (aka trail) of a system S as a sequence of alternating states and atomic actions of S:

st0
a0 !! st1

a2 !! · · · stk
ak !! · · ·

Given a mutator step m preceded and followed by zero or more collector steps, we must show that
there is a trace of the mutator alone that reflects the action of m. The key step is illustrated
in the figure below. Let S1 = run(mutator) and S2 = run(mutator||collector). Consider
(co)inductively a trace tr1 of S1 that arrives at a state st1 and a trace tr2 of S2 that arrives at an
equivalent state st2. If tr2 proceeds with a mutator step m preceded and followed by zero or more
collector steps, we must show that there is a trace of S1 that reflects the action of m and results in
an equivalent state.

tr1 : · · · !! st1

∼=

m !! st′1

∼= ?

!!

tr2 : · · · !! st2
c1 !! m !! c2 !! st′2 !!

1or induction if we use a constructor for an initial state

2

* *

First, since st1 and st2 are equivalent and m is enabled in st2, then it is also enabled in st1 – this
requires that all observations that inform control decisions made by the Mutator are part of the
state equivalence. Consequently, there is some extension of the trace prefix of st1 with action m.
Next, we show that the resulting states are equivalent:

st2 ∼= st1 by assumption

=⇒ c1(st2) ∼= st1 by Col subtype property, transitivity

=⇒ m ◦ c1(st2) ∼= m(st1) by Mut subtype property

=⇒ c2 ◦m ◦ c1(st2) ∼= m(st1) by Col subtype property, transitivity

⇐⇒ st′2
∼= st′1 by definition

From the last step we can also infer

=⇒ live st′2 ≃ live st′1 by axiom graphIso in stateEquiv

where ≃ denotes isomorphism between two graphs. This means that as the composed system S2

simulates S1, step-by-step it preserves isomorphism of the live graph.

2 Handling Bounded Memory - a sketch

To complete the safety case, we must hande the effects of finite memory on the semantics of
this composition. Suppose that the Mutator can be run in initial states from which it consumes
an unbounded amount of dynamically-allocated memory. The Mutator, running by itself, will
eventually exhaust memory. However, when run concurrently with the Collector, then the joint
system will exhaust memory at some later point, but if the composition is safe, then the execution
traces should be essentially equivalent (bisimilar) up until the time that the first execution fails.
Let us assume that the Mutator blocks on the call to allocate new memory (which is selectSupply
in the Specware derivation). Once memory has been exhausted, then the trace terminates in a
failure state.

With these concepts in mind, we can formalize the notion of bounded safety of two systems. We
define a failure trace of a system Si as a sequence of alternating states and atomic actions of S
terminating in failure:

sti0
a0 !! sti1

a2 !! · · · stik
ak !! fail

Let n denote the size of memory. Define an information order on traces (less-defined-than-or-equal)

tr1 ⊑n tr2 ⇐⇒ ∀(j)(j ∈ [0, length(tr1)) =⇒ stj1
∼= stj2 ∧ . . . ∧ last(tr1) = fail)

We should be able to lift that order to the set of all traces and then generalize the definition
of simulate to allow the simulator to continue beyond the failure of the simulated system. Also
generalize the definition of run to executing with memory of size n.

3
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initial specification. Each step prescribes how to generate a refinement of the previous 
specification. 
 
Each of the following subsections introduce a library refinement or a transformation for 
generating refinements, together with some examples.  We also discuss how each 
technique can automatically generate a formal checkable proof as a byproduct of its 
action. 
 
Section 3.6.1 introduces an algorithm theory for solving a problem by means of iterating 
a monotone function to a fixpoint.  We apply this to finding the graph of live nodes.   
Sections 3.6.4, 3.6.5, 3.6.7, and 3.6.8 each introduce a transformation for generating 
refinements of the observers and transformers of a coinductive type (usually state).   

Coalgebraic refinements simply add further constraints to previously introduced 
transformers, rather than producing constructive definitions.  It is only at the end that 
constructions are given; i.e. that a particular model is chosen.  This contrasts with 
algebraic style refinement in which constructors are given for types and operators are 
inductively defined over the types.  All constructions are explicit and immediate.  

3.6.1 Algorithm	Design	Theory	for	Fixpoint	Iteration	

There are two classes of garbage collection algorithms: 

• Stop-the-world collectors: these are the classical non-concurrent collectors, 
where the mutators need to be stopped while the collector works.  

• Concurrent collectors: these are the collectors that allow the mutators to keep 
working concurrently with the collector (except for very short pauses). 

 
The traditional stop-the-world collectors correspond on the abstract level to the classical 
fixed-point theory of Tarski and Kleene, where the live nodes are the least fixpoint of a 
monotone function on the graph G.  More recently Cai and Paige [CaiPaige89] 
published a number of generalizations that are streamlined towards practical algorithmic 
implementations of fixpoint computations.  In a concurrent setting the graph G is 
changing while the Collector is operating, which means (abstractly) that the monotone 
function itself is changing during the iteration process.  In [Pavlovic10] we developed 
general conditions under which the result of the iteration process is a fixpoint of the 
initial monotone function but not a least fixpoint.  We call this dynamic fixpoint theory, 
and it justifies the safety of CGCs.  
 
We paraphrase the main result of Cai and Paige here, since it provides the template for 
our algorithm strategy: 
 
Theorem 1 [Cai-Paige89]  
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  Let A be a cpo2 and f: A -> A be a monotone function that is inflationary in r. If     
  <s0, s1, s2, ..., sn> is an arbitrary sequence obeying the conditions 

r = s0 ,  
si < si+1 ≤ f(si)      for i < n, 
sn = f(sn) 

  then sn is the least fixed point of f relative to r. Conversely, when the least fixed point    
  is finitely computable, then the sequence will lead to such an sn. 
 
Theorem 1 provides a natural abstraction from workset-based iterative algorithms, 
which maintain a workset of change items.  At each iteration, a change item is selected 
and used to generate the next element of the iteration sequence.  The incremental 
changes tend to be small and localized, hence this is called the micro-step approach 
and the Kleene chain the macro-step approach.  All practical collectors use a workset 
that records nodes that await marking. 
 
We now derive the overall structure of a garbage collector.  The essence of it is the 
iterative algorithm for finding a superset of live nodes which we can complement to 
obtain a subset of dead nodes to recycle.  Letting roots denote the roots of the active 
graph together with the head of the supply list, we have 

live = lfp f({}) 
where 

f(R) = roots \Union {b |  b∈ G.sucs(a) ⋀ ∈ R}; 
in words, the active nodes are the cumulative closure of the roots under the successor 
function in the current graph G. 
 
To derive an algorithm for computing the dead nodes, we simply compute the set of live 
nodes and subtract them from the set of all nodes, much like in a sieve algorithm.  See 
Figure 5.  We can compute the set of live nodes by a correct, but naive iterative 
algorithm via a Kleene chain; its proof is constructed by instantiating Kleene's proof. 
 
Following Cai and Paige [CaiPaige89], we can construct a more efficient fixpoint 
iteration algorithm using a workset defined by  

WS = f(WSvar) \ WSvar  
       =  roots ∪ {b |  b∈ G.sucs(a) ⋀ a∈WSvar} \ WSvar 
 
 
 
 
 

                                                             
2 A cpo is a partial order that is complete in the sense that every subset with an upper 
bound has a least upper bound. 
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Figure 5: Kleene Fixpoint Algorithm 
 
Although this workset definition is created by instantiating a problem-independent 
scheme, it has an intuitive meaning: the workset is the set of nodes whose parents have 
been reached (and ``marked'' as live), but who themselves have not yet been marked.   
 

SSP = spec 
 type State 
 op pre  : State -> Bool 
 op post : State -> State -> Bool 
 op p (st:State | pre st): {st':State | post st st'} 
end-spec 
 
Mealy = spec 
 type State 
 type In 
 type Out 
 op pre  : State -> Bool 
 op post : State->In->Out->State->Bool 
 op p (st:State | pre st)(i:In): {(o,st'):Out*State | post st i o st'} 
end-spec 

 
Specification SSP} provides an abstract specification of a state-based problem to solve.  
State} is intended as a coinductive type and   p} is specified via a precondition on the 
input state and a dependently typed postcondition over the input and output states.   
 
A generalization to a Mealy machine is also given: the specified transformer depends 
both on the initial state and an input, and produces both an output state and an output 
result. 
 

SBFixpointIterationWorksetTheory = spec 
 import SSP, StructuredTypes 
 op xs: State -> Set X   
 type X 
 op F : State -> Set X -> Set X 

findLFP( {} ) 
op findLFP(S) =  
     if S ≠ f(S 
     then findLFP( f(S) ) 
     else S 



24  

 axiom F_is_monotone is  
   fa(st:State,s1:Set X, s2:Set X)  
     s1 subset s2 => (F st s1) subset (F st s2) 
axiom fixpoint_solves_p is 
     (F st' (xs st')) subset (xs st')  => post st st' 
end-spec 

 
Specification SBFixpointIterationWorksetTheory provides the structure and sufficient 
conditions (sufficient structure) to enable a fixpoint solution to a problem given by SSP.  
This formulation differs from the classical Tarski/Kleene/Paige formulation in that the 
function F is a monotone function that depends on current state; i.e. in a fixed state it is 
a monotone function.  Our formulation sets the stage for addressing the issue of 
iterating a monotone function over a changing state due to a concurrent actor. 
 

SBFIW_Algorithm = spec 
 import SBFixpointIterationWorksetTheory 
op WS(st:State): Set X = (F st (xs st)) -- (xs st) 
op initialState(st:State): {st':State | xs st' = empty_set} 
op nextState(st:State)(x:X): {st':State | xs st' = set_insert(x, xs(st))}  
op selectWS (st:State): {(st',ox): State * Option(X) |  

        if WS st = empty_set 
        then WS st' = WS st  
             &&  ox = None 
        else ex(y:X)(y in? WS st  
                    && WS st' = delete(y, WS st) 
                    && ox = Some y)} 

 
 op p (st:State | pre st): {st':State | (WS st') = {} 
                    && (F st' (xs st')) = (xs st')} = 
     let st1 = initialState st in f_iterate st1 
 
 op f_iterate (st: State): {st':State |  WS st' = {} && (F st' (xs st')) = (xs st')} = 
    case selectWS st of 
      | (st',None) -> st' 
      | (st',Some y) -> f_iterate(nextState st' y)    
 
 theorem correctness_of_p is 
    fa (st:State,st':State) 
       (pre st && st' = p st => post st st') 
end-spec 
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A proof of the correctness theorem is as follows:  First, we show that f_iterate satisfies 
its postcondition: at termination, we have selectWS st has returned (st',None), which by 
the postcondition of selectWS implies that  
 
   WS st = WS st' = empty_set, 
 
which further implies that (F st' (xs st')) = (xs st').  Next, we show that p satisfies its 
postcondition: Assume that p starts in state st and terminates in state st’. Then the 
postcondition of f_iterate holds in st’:  
  
  WS st' = {} && (F st' (xs st')) = (xs st') 
 
which is also the postcondition of p.  Finally, we show that correctness_of_p is indeed a 
theorem.  Assume that p starts in state st such that pre st, and it terminates in state st’.  
Then the postcondition of p holds, but then axiom fixpoint_solves_p implies that post st 
st'.    
 
The algorithm theory above is formally expressed as a morphism  
 

fixpoint: SBFixpointIterationWorksetTheory → SBFIW_Algorithm. 
 
We formulate it, prove it, and store it in the library.  A slightly more general algorithm 
theory and corresponding proof for the general case in which the fixpoint function 
changes with each iteration can be found in [Pavlovic10].  The same algorithm scheme 
is used, but SBFixpointIterationWorksetTheory is generalized and the proof shows that 
the fixpoint algorithm converges to a nonleast fixpoint in general. 
 
The process of applying an algorithm theory is as follows: the goal is to generate a 
refinement of a given specification S and we desire to apply algorithm theory fixpoint.  
We construct a morphism  
 

m:SBFixpointIterationWorksetTheory → S.   
 

m is called a classification morphism [SmithD9305] because it explicates how S has a 
problem that can be treated by fixpoint iteration.  To obtain an algorithm design, we then 
take the pushout of fixpoint and m.  The effect is to instantiate the schematic definitions 
in SBFIW_Algorithm to the details of the problem in S. 
 
The next question is how to emit a proof as a by-product of the pushout.  One approach 
that we prototyped involves locales in Isabelle.  A locale is a parametric proof, which 
allows it to be instantiated.  Since the algorithm theory SBFIW_Algorithm is parametric 
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on SBFixpointIterationWorksetTheory, a locale that captures the reasoning above can 
be instantiated when we use a pushout to instantiate SBFIW_Algorithm.   
 
One challenge in formulating a precise abstract specification for workset-based fixpoint 
iteration is the inherent nondeterminacy of selecting what to do next from the workset – 
the order of selection doesn’t matter as far as the final result is concerned because the 
iteration computes a function.  However, the semantics of Specware’s MetaSlang 
language is classical, in terms of sets and functions, so nondeterministic selection from 
a set is not a function and is therefore not allowed.   This has been a longstanding 
problem in the formal specifications community. 
 
We discovered a novel solution to this problem by exploiting the black-box nature of 
coalgebraic types (called cotypes or codatatypes in the literature).   For our Garbage 
Collection (GC) examples, we require a workset variable which helps control the 
iterative process of tracing live nodes.  An operation that works directly on the workset 
to extract an element cannot be a function.  Instead, the trick is (1) to express the 
workset as an observation of the State (or Heap) cotype, and (2) to specify a select 
operation as a function of the State rather than the workset directly.  That way, we can 
ultimately refine the select operation to a function that works on the set representation 
(e.g. a list) rather than the (abstract) set itself (see the section below on the Observer 
Refinement transformation).  Solving this problem allows us much more freedom to 
develop specifications at the most abstract level possible, which allows simpler 
inference calculations and maximizes our implementation freedom. 
 
Example: Finding Live Nodes 
 
We apply the SBFIW_Algorithm algorithm theory to the problem of finding the live nodes 
in a heap. 
 

liveasFIP = spec 
  import Collector 
  op FHeap(H:Heap)(ns:Set Node):Set Node =  
     (roots H) \/ (allOutNodes H ns) 
  end 
 
live_as_fixpoint = morphism  
SBFixpointIterationWorksetTheory -> liveasFIP 
   {State  ⟼ Heap, 
    pre      ⟼ findLive_pre, 
    post        ⟼ findLive_post, 
    p           ⟼ findLive, 
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    X           ⟼ Node, 
    obs         ⟼ black, 
    nextState   ⟼ insertBlack,  
    F           ⟼ FHeap } 

 
A classification morphism can be defined as in the figure.  The first four translations of 
the morphism identify the SSP problem to solve. Conceptually, this part of the morphism 
can be obtained based on simple parsing of the the specification once it is given that 
findLive is the problem at hand.  Since the goal of findLive is to find a set of Nodes, then 
X translates to Node.  The abstract observer obs observes the growing set of nodes that 
are found to be reachable/live, so its image is the black observer and it is undated using   
insertBlack. 
 
Since Specware's morphisms maps symbols to symbols, there is sometimes the need 
to construct a definitional extension to provide the requisite symbols for the codomain of 
a morphism.  Here we extend the specification Collector with a defined function FHeap 
that serves as the image of the monotone function for the algorithm theory. 
 
Taking the pushout of live_as_fixpoint and fixpoint SBFixpointIterationWorksetTheory -> 
SBFIW_Algorithm essentially yields an extension of Collector with a definition for 
findLive. 
 

Collector1 = spec 
  import Heap 
  ... 
  op WS (st:State): Set(Node) =  FHeap st (black st) -- black st 
  op selectWS (st:State): 
       {(st',ox): State * Option(X) |  

        if WS st = empty_set 
        then WS st' = WS st  
             &&  ox = None 
        else ex(y:X)(y in? WS st  
                    && WS st' = delete(y, WS st) 
                    && ox = Some y)} 

 
  op findLive(st:State | black st = supply st): {st':State | live st' subset black st' } = 
       f_iterate st  
 
  op f_iterate (st:State):State = 
    case selectWS st 
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    of (st', None)   -> st' 
     | (st', Some y) -> f_iterate(nextState st' y) 
 
  theorem correctness_of_p is 
    fa (st:State,st':State) 
       (black st = supply st && st' = p st && live st' subset black st') 
end-spec 

 
Other examples include: finding primes via Sieve of Erastosthenes, reachability in a 
graph, dominators, constraint propagation, and many other problems. 
 
Various extensions can be made to the fixpoint algorithm theory. 
 

• Phase-based iteration -- We introduce a flag that signals when the state-based 
iteration is ongoing.  This allows us to assert that an iteration-relevant invariant is 
to be maintained during iteration, and not at other times. 

 
• Dynamic Fixpoint Iteration -- Note that in the formulation of 

SBFixpointIterationWorksetTheory, the monotone function F depends on the 
state.  When the fixpoint algorithm is executing concurrently with an application 
that changes the state, then F itself may change.  In that situation, what does it 
mean to reach a fixpoint?  Under mild conditions, we showed in [Pavlovic10] that 
the generated fixpoint is a non-least fixpoint of the F based on the initial state.  In 
a powerset lattice, the dynamic fixpoint generates a supserset of the least 
fixpoint.  For garbage collection, this means that the collector generates a 
superset of live nodes, or conversely, a subset of dead nodes.  This is sound, 
since it satisfies the safety condition of garbage collection: never collect live 
nodes. 

 

3.6.2 Transformations	for	coalgebraic	specifications	

In the following subsections we describe transformations that are specific to coalgebraic 
specifications.   These are new transformations that we developed for our GC 
derivations. 

3.6.3 Observer	and	Transformer	Introduction	

During the derivation process, there are various cases in which we need to introduce 
new observers and transformers.   Sometimes this comes about as part of the normal 
development process of a library theory.   For example, the domain theory for garbage 
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collection starts with mutable directed graphs as a way to specify heaps, with Graph as 
the basic cotype, and the observers and transformers discussed earlier.   Graphs are 
then extended to Heaps by adding an observer for roots, supply nodes, and ghost 
observers for live, dead, and active nodes.   New transformers include addRoot (to add 
a new root; e.g. a reference from a register) and addSupply (to add a dead node to the 
supply list).    

One well-formedness obligation in coalgebraic specifications is that each transformer 
must specify how it affects all observers.   Consequently, when we extend a 
specification with a new observer, then care must be taken to incrementally add 
coinductive constraints to all transformers that affect it.   We extended Specware to 
allow incremental accumulation of coinductive constraints: 

  refine def newGraph (ni: NewInfo) 
    : {H: Heap | roots H = empty_set  
               && supply H = initNodeIds ni } 
 

which adds two constraints to the (previously introduced) specification for transformer 
newGraph.   In words, the roots of a Heap are initialized to the empty set and the supply 
nodes are initially all nodes. 

Another case that introduces new observers is in algorithm theories.   For example, the 
state-based fixpoint iteration theory introduces the workset as an observer of state, 
together with an invariant definition.   As discussed later, the invariant is eagerly 
maintained by the Observer Maintenance transformation so that for each transformer, 
the coinductive constraint for the observer is automatically calculated (and the 
calculation is emitted as a proof of correctness for the refinement). 

The Observer Maintenance transformation (see next subsection) is another explicit 
mechanism for introducing observers.   The arguments to the transformation include a 
new observer of state and an invariant that characterizes the observer in terms of the 
current value of other observers.   

3.6.4 Observer	Maintenance	
 
Recall that the algorithm theory of the previous section, SBFIW_Algorithm, introduced 
an observer WS that is intended as the workset of the fixpoint iteration; i.e. the frontier 
of elements that are candidates to add to the growing fixpoint.  The observer has a 
definition, which allows us to compute its value on demand, but there are situations 
where performance can be increased by incrementally maintaining the observer rather 
than recomputing it from scratch.  The characteristic scenario is the occurrence of WS 
in a loop where its value is incremented once per iteration. 
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The Observer Maintenance transformation is applied to a defined observer, say  

obsE: State → E,  
that we desire to maintain incrementally rather than compute on demand.  The 
performance improvement comes from a space-time tradeoff: we store the 
incrementally computed value of the observer obsE so that, on demand, we can simply 
access its value (knowing that the stored value equals the defined value). 
 
In the context of a derivation, the idiom is that we introduce a fresh observer and its 
definition 

op obsE(st:State):E = (phi st). 
Rather than manually enter the coinductive constraints that assert how each 
transformer affects this observer, we wish to use the definition to automatically calculate 
those constraints and add them.  In a Specware metaprogram/derivation-script, we write 
 

 transform S by {maintain(obsE), ... other transformation cmds} 
 
The Observer Maintenance transformation performs the following steps: 
 

1. for each undefined transformer  
            

op t(st:State | pre st)(args:Args):{st':State | post st args st'} 
    
 augment its pre- and post-conditions with the obs invariant as follows: 
 

op t(st:State | pre st && obsE st = e st)(args:Args): 
      {st':State | post st args st' && obsE st' = e st'} 

 
2.  apply simplification rules in context to normalize it to the coinductive form 

 
      obsE st' = delta st' (obsE st) ) 
 

     for some function delta:State->E->Ed}.   
 

3.  refine the specification of t to 
 

op t(st:State | pre st && obsE st = e st)(args:Args): 
      {st':State | post st args st' && obsE st' = delta st' (obsE st)} 
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Note: Step 1 applies only to transformers that are specified but do not yet have a 
definition.  Once a transformer has a definition in terms of other transformers, then the 
definition body presumably maintains the observer invariant by construction. 
 
In garbage collection derivations, the observer maintenance has a variety of uses.  One 
is to incrementally maintain the workset in the fixpoint iteration that traces the live 
nodes. 
 

3.6.4.1 Example:	Maintaining	the	workset	in	a	tracing	algorithm	
 
Continuing our example from earlier, notice that the algorithm theory has introduced a 
new observer, WS, with its definition.  The fact that there are frequent calls to this 
observer during the iterative loop by selectWS suggests to apply the Observer 
Maintenance transformation. 
 

OM1 = transform Collector1 by  
         {maintain(WS) 
            [... theorems-to-apply ...]} 
 

We extend our derivation script/metaprogram to apply Observer Maintenance to 
observer WS in the Collector1 specification, as shown.  The optional argument to 
maintain(WS) is a list of theorems that can be used in the calculations of the update 
codes.  More generally, it is a specification of theorems to apply, focusing commands, 
and other calculation tools to apply, such as common-subexpression elimination and 
simplification. 
 
The transformation first collects all undefined transformers (of the cotype that WS 
depends on), and then attempts to calculate incremental update code to maintain the 
observer's invariant.  We show two examples by way of illustration: insertBlack and 
addNode. 
 
To maintain the invariant  
 

WS st = FHeap st (black st) -- black st 
 
the specification for transformer insertBlack 
 

op insertBlack(st :State)(n:NodeId | n in? nodes st): 
   {st':State | black st' = insert(n, black st)} 
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is transformed to 
 

op insertBlack(st :State | WS st = FHeap st (black st) -- black st) 
                      (n:NodeId | n in? nodes st): 
                      {st':State | black st' = insert(n, black st) 

     &&  WS st' = FHeap st' (black st') -- black st'} 
 
We will need the theorem 
 
theorem distribute_allOutNodes_over_insert is 
   fa(G:Graph, n:NodeId, ns:Set NodeId) 
      (allOutNodes G (insert(n, ns)) = allOutNodes G ns \/ (outNodes G n)) 
 
We then simplify the postcondition on WS st', seeking to derive an incremental, 
coinductive form for it.  As assumptions, we gather (1) the preconditions, (2) other the 
contextual postconditions (on black st'), and (3) any implicit frame conditions (observers 
that do not change under the transformer).  
 
  theorem distribute_set_diff_over_union is [a] 
      fa(A:Set a,B:Set a,C:Set a) 
        ((A \/ B) -- C = (A -- C) \/ (B -- C)) 
 
  theorem distribute_set_delete_union2 is [a] 
      fa(A:Set a,B:Set a,y:a) 
        (~(y in? B) => set_delete(y, A \/ B) = set_delete(y, A) \/ B) 
 
  theorem distribute_set_diff_over_right_insert is [a] 
      fa(c:Set a,d:Set a,y:a) (c -- set_insert(y,d) = set_delete(y, c -- d)) 
 
 
Assume: WS st = FHeap st (black st) -- black st) 

     &&  n in? nodes st 
     &&  st' = insertBlack st n 
      && black st' = insert(n, black st) 
      && roots st' = roots st 

 
Simplify:  WS st'  
 
   =    { by assumption on WS } 
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      FHeap st' (black st') -- black st' 
 
   =    { applying the assumption on black } 
 
      FHeap st' (insert(n, black st)) -- (insert(n, black st)) 
 
   =    { unfolding the definition of FHeap (from liveasFIP) } 
 
      (roots st') \/ (allOutNodes st' (insert(n, black st)))  -- (insert(n, black st)) 
 
   =    { apply assumption about roots } 
 
      (roots st') \/ (allOutNodes st' (insert(n, black st)))  -- (insert(n, black st)) 
 
   =    { apply assumption about st' } 
 
      (roots st) \/ (allOutNodes (insertBlack st n) (insert(n, black st))) -- (insert(n, black st)) 
 
   =    { apply theorem allOutNodes_of_insertBlack } 
 
      (roots st) \/ (allOutNodes st (insert(n, black st)))  -- (insert(n, black st)) 
 
   =    { applying distribute_allOutNodes_over_insert } 
 
      ((roots st) \/ (allOutNodes st (black st)) \/ (outNodes st n)) -- (insert(n, black st)) 
 
   =    { applying distribute_set_diff_over_union } 
 
      ((roots st) \/ (allOutNodes st (black st)) -- (insert(n, black st))) 
      \/  
      ((outNodes st n) -- (insert(n, black st))) 
 
   =    { fold the WS invariant } 
 
      WS st \/ ((outNodes st n) -- (insert(n, black st))) 
 
   =    { applying theorem distribute_set_diff_over_right_insert } 
 
      WS st \/ delete(n, (outNodes st n) -- (black st)). 
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As a result of this calculation, we can refine the specification for insertBlack to 
 
op insertBlack(st :State | WS st = FHeap st (black st) -- black st) 
                      (n:NodeId | n in? nodes st):  
                      {st':State | black st' = insert(n, black st) 
                                   &&  WS st' = WS st \/ delete(n, (outNodes st n) -- (black st))'} 
 
We treat this as an atomic action, since we require that no other process/thread can 
observe a state in which the invariant on WS is violated.   Notice that this is the 
essential update underlying Dijkstra’s on-the-fly concurrent mark&sweep algorithm, 
which was discovered after many flawed attempts [Dijkstra78].    The essence falls out 
by a simple calculation in our setting. 
 
Note that insertBlack is a Collector operation.  We also perform Observer Maintenance 
on Mutator transformers.  Effectively, this requires that the Mutator cooperate with the 
Collector in maintaining the workset.  We show this in the following calculations for 
addNode or setTgt. 
 

3.6.4.2 Example:	Reference	Counting	
 
As another of the many examples of applying Obsever Maintenance, consider the 
maintenance of a reference count observer. 
 

op  refcnt(G:Graph)(n:Node):Nat = occs(n,roots G) + inArcCnt G n (arcs G) 
 
and its maintenance with respect to a simple addArc transformer: 
 

op  addArc(G:Graph| refcnt G n = occs(n,roots G) + inArcCnt G n (arcs G))  
                 (x:Node, y:Node) :  
                 {G’:Graph | nodes G’ = nodes G 
                                Ù outArcs G’ x  = (outArcs G x) + (x®y) 
                                Ù refcnt G’ n = occs(n,roots G’) + inArcCnt G’ n (arcs G’)} 

 
The simplification of the inserted occurrence of refcnt in the postcondition is 
 
 

refcnt G’ n = occs(n,roots G’) + inArcCnt G’ n (arcs G’)                    
                 = occs(n,roots GÈ{x®y} + inArcCnt GÈ{x®y} n (arcs GÈ{x®y}) 

      = if n = y  
 then 1 + occs(n,roots G) + inArcCnt G y (arcs G)  
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           else occs(n,roots G) + inArcCnt G y (arcs G) 
      = if n = y  
  then 1 + (refcnt G n)  
 else (refcnt G n). 

 
 

3.6.4.3 Other	Examples	
 
We used Observer Maintenance extensively in our GC derivations.  It gives rise to 
natural data structures, their meaning, and efficient incremental computation.  In 
particular, the following data structures emerge from Observer Maintenance: 

1. Reference Count:  reference count, supply 
2. Mark&Sweep:  workset, root count, supply length, supply 
3. Copying Collector:  new-space, root count, supply 
4. Generational Collector:  new-generation, root count, supply 

 
The following two subsections describe generalizations of Observer Maintenance. 

3.6.4.4 Generalization	of	Observer	Maintenance:		Conditional	Invariants	

We developed a technique for maintaining conditional invariants.  The motivation is that 
for efficiency’s sake we want to maintain an invariant during the marking phase, but not 
during other phases (e.g. sweeping and when the collector is idle).   To our knowledge, 
all previous work on transformations to maintain invariants has focused on global state 
invariants (which are required to hold in all states at all times).   The invariant that 
characterizes the workset in the tracing of live nodes only needs to hold during the 
Marking phase.  Any work done to maintain the workset during sweeping, or when the 
Collector is idle, is wasted.    Our approach is to have a globally observable flag 
marking? that is on exactly during the Marking phase.  Then the invariant can be 
expressed as a conditional: 
              marking? Þ invariant.      
 
Our transformation then calculates how to incrementally maintain the invariant over a 
transformer.   For each transformer, we specify whether the flag can be assumed on (or 
off) for its duration, if knowable at specification-time.    

3.6.4.5 Generalization	of	Observer	Maintenance:	Maintaining	an	Inequality	
 
Consider again the workset invariant:  
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WS st = FHeap st (black st) -- black st) 
           = (roots st) \/ (allOutNodes H (black st)) -- black st 

 
The action of a concurrent application will change the heap, with the effect of changing 
the set of root nodes and changing the outnodes of various live nodes.  This will 
typically cause the invariant to be violated. 
 
Various extensions can be made to the Observer Maintenance transformation.  In 
particular, it is sometimes necessary to maintain an inequality, rather than an equational 
invariant.  There are two main reasons for weakening equational invariants to 
inequation3.  The intuition is that the action of a concurrent process/thread can cause 
the weakening of an inequation, instead of the outright breaking of an equation. 
 
First, we may not have strong enough lemmas to calculate code to maintain the 
equality, but enough to maintain an inequality.  Second, we may have strong enough 
lemmas to calculate maintenance code for an equation, but it is too expensive to 
compute.  It may be less expensive to maintain an inequality and then use a residual 
check at runtime to eliminate the over-approximative delta (as in Workset case).  In 
concurrent algorithms, the distinction of the cases is moot.  The actions of a concurrent 
agent often mean that we can only know and enforce at design-time an inequation.  
Related to both of these points, it is often noted that inequalities arise frequently in 
concurrent algorithm design.  It is common that where an equation is enforceable in a 
sequential algorithm, its concurrent variant requires an inequation due to interference 
between threads/processes. 
 
A good example of this is the workset in a Concurrent GC.  In the sequential/stop-the-
world collector, we can maintain the exact workset given by WS above.  In a concurrent 
setting, where the Mutator may swing pointers during the process of finding live nodes, 
it would be prohibitively expensive to maintain the exact frontier of reachable live nodes.  
The only efficient solution is to maintain 
 

 invariant  (FHeap st (black st) -- black st) <= WS st 
 
i.e. that we must maintain an upper bound on the frontier of reachable nodes that have 
not yet been marked as live. 
 
For example, consider worksets in dynamic fixpoint algorithms.  The best we can do in a 
dynamic fixpoint is find an overapproximation of the least fixpoint.  Consequently, the 
                                                             
3 In Rely-Guarantee this is called stabilization — weakening the invariant so that it is 
stable under state changes   by the environment.  
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workset, although ideally defined by an equality (set difference), can be weakened to an 
inequality; i.e. as long as way can incrementally compute an upper bound on the ideal 
WS, then we preserve the property of converging to a (nonleast) fixpoint.  This happens 
here in the maintenance of WS under the swinging of an arc/ptr - we may leave a dead 
node in the WS, resulting in an overapproximation of the currently live nodes.  The 
prescription for a bounding WS (vs exact equality) should fall out of the overall spec and 
the algorithm theory (which introduces the workset). 
 
FD in the dynamic fixpoint setting - conjecture: in a static fixpoint setting, we can use an 
upper bound of the workset to converge to a nonleast fixpoint.  In a dynamic setting, this 
may be necessary for performance reasons (e.g. selectWS which we generalize from a 
set to a multiset). 
 
In the Specware collector derivations, we noted the need for both kinds of inequality 
maintenance.  We found a way to produce the correct effect in the derivations, but not in 
the most general way.  The correct approach is to generalize the Observer Maintenance 
transformation to allow calculation of update code for invariants of the form  
 

 invariant  E st <= obs st 
 
where <= is a partial order, and the invariant provides a (upper or lower) bound on the 
observer obs.  Equational invariants are a special case.  The goal of the Observer 
Maintenance transformation is to calculate update code that maintains as strong a 
bound on the observer as possible, given what is knowable statically (at design-time). 
 

3.6.4.6 Related	Work	
 
The observer maintenance transformation builds on earlier work on strength reduction 
in compilers, finite differencing [Paige82], incrementalization [Liu13].  These previous 
transformations work by looking up the update code from pre-computed tables.  
Consistent with our generalization of Paige's Finite Differencing transformation 
[SmithD9009], we allow the maintenance of invariants over user-defined vocabulary, 
since we calculate the update code in the context of the application domain theory; that 
is, we use the axioms and theorems of the domain as part of the calculation of update 
code.  Observer maintenance can be viewed as an adaptation of our generalization of 
finite differencing to coalgebraic specifications. 
 
The well-known "tricolor" abstraction invented by Dijkstra et al. [Dijkstra78] arises 
naturally as a by-product of a generic (i.e. problem-independent) transformation (and 
calculations) for maintaining invariants.  The "gray" nodes correspond to the workset 
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that is used to control the fixpoint iteration process.  The "black" nodes are the marked 
nodes (nodes that are, or were, live), and the white nodes are unmarked nodes.  The 
necessity for mutator cooperation when assigning a reference (via addArc) falls out via 
calculation.  The need for a write barrier falls out from the need to perform the FD 
increments atomically with their triggering action.  Dijsktra's decision to leave newly 
allocated nodes white unless their parent is black also falls out by straightforward 
calculation. 
 
One point is that there is no need for intricate problem-specific conceptualization and 
ad-hoc reasoning during design - the design concepts and inferences are generic in 
their outline and are only problem-specific in that they rely on problem-specific 
requirements/goals and problem-specific axioms and theorems.  That is, the designs 
are generic but tailored by generic inference patterns to the specified problem. 
 

3.6.5 Observer	Refinement	
 
A key problem in formal specifications has been how to refine datatypes from their initial 
abstract form to their final concrete form.  Typically the abstract form allows simpler 
reasoning during the design process, and the concrete form is complex but provides 
good performance.  Traditionally, refinement processes (in both the imperative and 
functional language communities) have focused on refining (or reifying) abstract types 
to concrete types.  There are well-known techniques for doing that when the abstract 
types are defined.  However, in the coalgebraic style that we are developing the 
abstract cotypes have no definition until the last step of refinement before code 
generation.  Our breakthrough was realizing that cotypes are characterized by 
observers and it is the observers that must be refined.  One way to think about this is 
that rather than refining the abstract cotype directly, we refine various observations of it, 
thereby indirectly refining the cotype.  At the last step of refinement, we define the 
cotype as a product (record, struct) of the concrete observers via the finalizeCotype 
transformation (see later section). 
 
We reduced these insights to practice by defining a simple transformation on 
coalgebraic specifications, called observer refinement, which we now summarize.  
 
The context is that we have an existing observer obsE:State®E and we have its effect 
on various transformers stated coinductively in their postconditions.  We wish to refine 
obsE to an observer of a more concrete type, and we do so by introducing a new 
observer 
 
  op obsEC:State®EC 
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of a more concrete type EC, together with an invariant that shows how to abstract EC 
observations to E observations: 
   
  axiom obsE_invariant is  
       obsE st = abs obsEC st 
 
where abs:EC®E is an abstraction function.  To make the calculations work it is useful, 
maybe necessary, for abs to be a homomorphism from EC to E. 
 
The goal is to eliminate obsE in favor the more concrete observation obsEC.  We use 
the invariant obsE_invariant to replace obsE everywhere in the postconditions of 
transformers and observers, and then simplify. 
 
We implemented the following syntax for observer refinement in a Specware 
tactic/metaprogram: 
 
      transform S by {refine(obsE, obsE_invariant),  ... simplification rules to use …} 
 
The refine transform calculates the following:  
 
 1. for each transformer t:State®Args®State that is coinductively specified by the 
    form 
 

  op t(st:State)(a:Args|pre(st,a)): 
       {st':State |   ...  & obsE st' = upsilon st a (obsE st)} 

 
   2. unfold the def of obsE (i.e. apply the invariant) yielding 
 

  op t(st:State)(a:Args|pre(st,a)): 
       {st':State |  ...  & abs obsEC st' = upsilon st a (abs obsEC st)} 

 
3.  then calculate a sufficient condition (since we can strengthen a  postcondition    
     in a  refinement) to get a refined definition of the form 

 
  op t(st:State)(a:Args|pre(st,a)): 
         {st':State |  ... && obsEC st' = chi st a (obsEC st)} 

 
 for some function chi: State ® Args ® EC ® EC. 
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More generally, we can replace all occurrences of obsE by obsEC in axioms, theorems, 
pre/post-conditions, and definition bodies; and then simplify.  Later, at code-generation 
time, there will be no references to obsE, so it is effectively eliminated in favor of 
obsEC. 
 
This transformation is used to reformulate the specification in terms of more concrete 
observers.  One unexpected fallout of this technique is that we can specify an observer 
that extracts an element of a set, which is not possible in a purely algebraic setting. 
 

3.6.5.1 Example:			Refining	the	WorkSet	to	a	WorkList	
 
In the previous section we applied Observer Maintenance to the Workset observer WS, 
which has type  
 

op WS: Graph → Set NodeId. 
 
For the sake of efficiency, we wish to implement WS by a List representation.  We 
introduce a new observer  
 

op WL: Graph → List NodeId.  
 
and define  
 
           axiom WS_as_List is 
              fa(G:Graph) WS G = List2Set (WL G) 
  
where List2Set is a homomorphism from Lists to Sets; that is, we have laws such as 
 

theorem List2Set _Nil is [a] 
     (List2Set (Nil) = (empty_set:Set a)) 
 
theorem List2Set _Cons is [a] 
    fa(y:a,lst:List a) (List2Set (Cons(y,lst)) = set_insert(y, List2Set lst) ) 

 
theorem List2Set_comprehension is [a] 
    fa(p:a->Boolean) (x:a | p}) = List2Set( [ x:a | p ]) 
 
theorem List2Set_concat is [a] 
    fa(l1:List a, l2:List a) List2Set(l1++l2) = List2Set(l1) ∪ List2Set(l1) 
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We apply Observer Refinement by including a statement 
 

 transform Collector2 by  
         { implement(WS,WS_as_List) 
               [rl _. List2Set _Nil, 
                rl _. List2Set _Cons, 
      ...]} 

 
The effect is to 

1. replace all occurrences of WS by List2Set∘WL 
2. simplify all such occurrences, replacing references-to and updates-of WS 

by WL 
 
For example, returning to our simple addArc transformer which maintains the WS 
invariant 

op  addArc(G:Graph | WS G= (roots G È outArcs G (black G))\(black G))  
        (x:Node, y:Node) :  
                 {G’:Graph |          nodes G’ = nodes G 
                                   Ù outArcs G’ x  = (outArcs G x) + (x®y) 
                                   Ù WS G’ = WS G È {y | xÎblack G Ù yÏblack G}} 
 

the transformation automatically tries to simplify the update to WS as follows:  
 
Assume:  fa(G:Graph) WS G = List2Set (WL G) 
 
Simplify:  WS G’ = WS G È {y | xÎblack G Ù yÏblack G} 
 
   =    { by assumption on WS } 
 
     List2Set(WL G’)  = List2Set(WL G) È {y | xÎblack G Ù yÏblack G} 
 
   =    { List2Set_comprehension } 
 
     List2Set(WL G’)  = List2Set(WL G) È List2Set ([y | xÎblack G Ù yÏblack G]) 
 
   =    { List2Set_concat } 
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     List2Set(WL G’)  = List2Set(WL G ++ [y | xÎblack G Ù yÏblack G]) 
 
   ⟸    { Leibniz/substitutivity } 
 
     WL G’  = WL G ++ [y | xÎblack G Ù yÏblack G]. 
 
We can then refine the specification to 
 

op  addArc(G:Graph) (x:Node, y:Node) :  
        {G’:Graph |        nodes G’ = nodes G 
                                  Ù outArcs G’ x  = (outArcs G x) + (x®y) 
                                            Ù WL G’ = WL G ++ [y | xÎblack & y Ï black]  } 

 

which allows us to maintain the workset as a list.  In our derivations we go on to 
maintain the list as a stack. 

The Observer Refinement transformation is used extensively in our GC derivations and 
has been critical to obtaining good performance.   It allows us to develop domain 
specifications and problem formulations in terms of abstract types such as sets and 
functions, knowing that we can systematically and correctly refine them to efficient 
implementation types. 

3.6.5.2 Example:	Extracting	an	Arbitrary	Element	of	a	Set	

Another example illustrates how Observer Refinement solves a long-standing problem 
in formal refinement, namely, how to extract an arbitrary element of a set.   In the 
fixpoint algorithm, a central step is selecting an element from the Workset WS and 
finding its outArcs.   In a purely functional world the only way to select an element from 
a set is essentially to impose a linear order and select the minimum element.   
Intuitively, this is should an easy and natural operation, at least on finite structures, and 
it provides a good example of the mathematical formalism hindering rather than helping 
us.   Our approach uses the coalgebraic setting – the Workset WS is an observation of 
the State/Graph, which has unknown structure.   Under Observer Refinement, we 
indirectly refines the structure of State, ultimately allowing us to define a functions that 
pulls an element out of the workset in constant time. 

The arb observer is specified to return an element from a nonempty workset 

op  arb(G:Graph | WS G ≠ {}): {n:NodeId | n Î WS G }. 
 

Using the following theorems from the library 
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theorem List2Set_element is [a] 
    fa(lst:List a,n:a) n Î List2Set(lst) = (n Î lst) 
 
theorem List_element is [a] 
    fa(lst:List a)  lst ≠ {}  ⇒	first(lst) Î lst  

 
we apply Observer Refinement to refine WS to WL, we get the following calculation:  
 
Assume:  WS G = List2Set (WL G), 
      WS G ≠ {} 
Simplify:  n Î WS G 
 
   =    { by assumption on WS } 
 
     n Î List2Set(WL G)  
 
   =    { by  List2Set_element } 
 
     n Î WL G 
 
  ⟸    { List_element } 
 
     WL G ≠ []  ⇒	n = first(WL G) 
 
   =    { discharging the antecedent by assumptions } 
 
      n = first(WL G). 

So the specification for observer arb is refined to 

op  arb(G:Graph | WS G ≠ {}): {n:NodeId | n = first(WL G) }. 
 

One way to think of why this works is to consider a cotype State as an initially undefined 
implementation state, which has various observers.  As we perform observer refinement 
steps, we get closer to a definition of State that allows efficient observations and state 
transformations.  This allows us to start a derivation with very abstraction observers with 
unknown implementation, then to incrementally add implementation constraints. 
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3.6.5.3 Related	Work	
 
Until recently, the only mechanism for refining abstract datatypes in Specware was to 
apply library specification morphisms for various datatype refinements; e.g. 
Sets_to_Lists, and Maps_to_Lists [Blaine94].   These morphisms entail the need for 
quotient types (e.g. Sets are refined to a quotient type over Lists) and predicate 
subtypes (e.g. Sets are refined to a predicate subtype of Bags).   Observer Refinement 
adds another method for refining abstract types that provides more flexibility and leads 
to better performance.    One difference is that OR only allows the refinement of the 
type of an observer, rather than every occurrence of an abstract type. 
 
Observer Refinement is related to datatype refinement as first defined by Hoare in 1972 
and subsequently generalized [He86].   In the (similar) data reification of VDM, it is 
required that the homomorphism (called the retrieve function) must be surjective.  In 
other words, each abstract value has at least one concrete representation. 

3.6.6 StructureEx	

This transformation eliminates quantifiers in favor of let-bindings and substitutions.   It 
plays a crucial role in translating logical postconditions into a more functional form.   We 
developed this transformation and made many extension to handle cases.   
 

3.6.7 FinalizeCotype:		Cotype	Definition	and	Postcondition	Synthesis	

During a derivation, we typically introduce a cotype without a definition, but add 
observers to it in subsequent refinement steps.    

Observers at any stage in the refinement process come in several flavors.  Some 
observers have a definition (and so they are eagerly computed when needed).   Some 
are undefined but are specified by their effect on various transformers.   Some 
observers have an invariant characterization and are incrementally computed via the 
Observer Maintenance transformation.   Some are ghost observers and therefore have 
no effect on computation, since they exist solely to increase the precision of system 
properties. 

The finalizeCotype transformation is a packaging of two related transformations: cotype 
definition and postconditions synthesis. 

3.6.7.1 Transformation:	Cotype	Definition	

The cotype definition transformation introduces a definition for the cotype as a tuple, or 
record named fields.   It works by collecting the undefined observers that are not ghosts 
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and making them the fields of the tuple.   It then gives a definition to each observer as a 
field access to the local cotype element (commonly the state). 

Refinements of a coalgebraic specification correspond to subclassing. If we refine a 
spec Sspec introducing cotype S to a spec TSspec that introduces additional observers 
and transformers on S, then any S operator can be applied to any T object.  This is 
useful for example in refining the Graph/Heap notion of Node to "subclasses" Register, 
StackNode, HeapNode, and Supply. 
 
Suppose that in a refined spec later in the derivation of a GC, we have these undefined 
or maintained observers 
 

   nodesL : Graph -> List Node 
   rootsL : Graph -> List Node 
   supply : Graph -> List Node 
   WL           : Graph -> List Node    
   blackCM : Graph -> Map(Node,Boolean) 
   tgtIM  : Graph -> Map(Node,Map(Index, Node)) 

 
We implemented the following syntax for defining a cotype in a Specware 
tactic/metaprogram: 
 
      transform S by { finalizeCoType(Graph)} 
 
The transform analyzes the spec S and produces a refined specification with the 
following definition:  
 

type Graph= { nodesL   : List Node, 
         rootsL     : List Node, 
         supplyL    : List Node, 
        WL           : List Node, 
         blackCM  : Map(Node, Boolean), 
         tgtIM        : Map(Node, Map(Index, Node)) 
         rootCount : Nat 

   } 
The cotype definition transformation also gives definitions to the observers that are 
packaged up in the record (e.g. nodesL, rootsL, etc.),  
 

op nodesL(G:Graph): List Node = G.nodesL 
op rootsL(G:Graph): List Node = G.rootsL 
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and so on.  The transformation also unfolds calls to them everywhere, eliminating them 
as functions.  For example 

 
 op addRoot (G: Graph)(n: NodeId | n in? G.nodesL) 
                  : {G': Graph | G'.rootsL = n :: G.rootsL 

&& G'.WStack = if Map.TMApply(G.blackCM, n) 
    then G.WStack 
                  else push(n, G.WStack)  
&& G'.rootCount = 1 + G.rootCount } 

 
 

3.6.7.2 Synthesize	transformers	from	postconditions	
 
The second part of the finalizeCotype transformation, synthesizes definitions for each 
transformer.   It does so by translating the coinductive constraints in the postconditions 
of transformers into update of the newly-introduced cotype record.   Continuing the 
example,  
 

op addRoot (G: Graph)(n: NodeId | n in? G.nodesL) 
                  : {G': Graph | G'.rootsL = n :: G.rootsL 

&& G'.WStack = if Map.TMApply(G.blackCM, n) 
    then G.WStack 
                  else push(n, G.WStack)  
&& G'.rootCount = 1 + G.rootCount } = 

     G << { rootsL = n :: G.rootsL, 
     WStack = if Map.TMApply(G.blackCM, n) 

then G.WStack 
                 else push(n, G.WStack), 
      rootCount = 1 + G.rootCount} 

 
where G << {f1 = a, f2 = b, …, fn = z} is a Metaslang operation that denotes a record G’ 
in which each field of G’ is the same as in G, except G’.f1=a, G’.f2=b, …, G.fn=z.   The 
right-hand sides of the equations are evaluated first, and then the changes are made.   
Note that this transformation introduces a functional definition of the state change – it 
computes the new state as a function of the old/input state.  
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3.6.8 Globalization	

We implemented a new transformation that performs Globalization.  Its effect is to 
transform the implicit state in a coalgebraic specification to explicit global/shared state.   
It allows us to generate truly imperative code.  
 
Globalization can be described via the following abstract example.  Here the cotype 
State has been defined as a pair and the observer c and transformers f and g are 
single-threaded on State; i.e. they take State as input and produce a State as output. 
 

S = spec 
 type State = {a:A, b:B} 
 op c(st:State):C = h(st.a, st.b) 
 op f(st:State)(arg:Arg): State = 
     st << {a = alpha st.a, b = beta st.b} 
 op g(st:State)(arg:Arg): State*D =  
     (st << {a = gamma st.a, b = delta st.b}, 
      eps (st.a) (st.b)) 
end-spec 

 
We implemented the following syntax for globalizing a cotype in a Specware 
tactic/metaprogram: 
 
      transform S by {globalize(State)} 
 
The Globalization transformation on a cotype State requires that the type be single-
threaded; i.e. such that there can be no two elements of the type simultaneously live 
during execution.   Single-threadedness can be detected statically, however, the 
finalizeCotype transformation produces single-threaded definitions, and so it provides 
suitable input to the Globalization transformation. 
 
Since Specware’s Metaslang language is functional, and has no notion of state, the 
Globalization transformation necessarily is a step from Metaslang toward an imperative 
language, CommonLisp and C in our case.   Its steps are to 
 

1. Introduce a global variable of the cotype, say, var st:State. 
2. For each observer and transform, eliminate State as an explicit parameter and 

return, and replace local references to state by global references. 
3. Replace record updates of the cotype by assignments  

 
Shown in a pseudo-imperative notation, the effect of Globalization on S is 
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 type State = {a:A, b:B} 
 var st:State 
 
 op c():C = h(st.a, st.b) 
 op f(arg:Arg): Unit = 
     (  st.a := alpha st.a  
     || st.b := beta st.b ) 
 
 op g(arg:Arg): D =  
     (  st.a := gamma st.a  
     || st.b := delta st.b  
     || return (eps (st.a) (st.b)) 
     ) 

 
The effect of Globalization is to introduce a global variable st of cotype State, and all 
accesses to st are now to the global (versus access to the parameter as before the 
transformation) and changes to fields of State are via destructive assignment rather 
than functional copy&modify.   Our ad-hoc notation here treats concurrent assignment 
statements in an atomic region, in order that invariants are not observed to be violated. 
 
One technical issue arose during implementation.  The key assumption of globalization 
is that a State parameter occurs single-threaded throughout the specification.  As it 
turns out, the single-threadedness property holds for the Collector and Mutator 
(application-oriented) parts of the specification, but the part of the specification that 
gives the theory of States is not single-threaded – States are partially ordered to support 
a fixpoint iteration over them.  Another counter-example is any theorem about the 
evolution of State; e.g. that the dead nodes are monotonically increasing in time, since 
this involves a relation between two consecutive states.  The solution to this problem is 
to slice the specification according to the application-oriented definitions before applying 
globalization, keeping only parts of the code that are intended for execution as opposed 
to specifying properties of State and State evolution.  This entailed the need to enhance 
our existing slicing mechanisms to cope with some of the new coalgebraic features of 
MetaSlang. 
 
The correctness of this transformation is straightforward in a sequential imperative 
language.  It is more difficult to prove in a concurrent setting because of possible 
interference with State as shared memory.  The proof that this transformation works for 
concurrent applications depends on assume-guarantee reasoning.  As discussed 
earlier, for concurrent garbage collection, we start with the specified assumption that the 
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Mutator cannot access the “black/white/gray” information about nodes, which is strictly 
Collector data – so the Collector can assume that other processes can only increase the 
set of white/dead nodes.  Conversely, the Collector cannot modify the set of live/black 
nodes – so the Mutator can assume that other processes leave the set of live nodes is 
invariant.  This general reasoning is what’s needed for the proof that Globalization 
applied to concurrent GC is correct. 
 
One improvement to the Globalization Transformation was to generate updates to the 
global state that are maximally localized.  In CommonLisp parlance, we replaced setq’s 
by setf’s.  Extra analysis machinery and tables of setters and getters (updates and 
accessors) were needed. 
 
A guiding concern in the above explorations has been whether the transformations can 
be simple and clean enough to emit proofs as a by-product;  i.e. either we prove the 
transformation correct once-and-for-all or we generate a proof script justifying each 
application.  Towards this end, we factored our Globalization transformation into a 
sequence of simpler transformations so that each could be extended to emit proofs with 
each application.  The steps include (1) Linearize the single-threaded state updates (to 
get the code in a form that will avoid interference upon translation to sequential 
imperative form),  (2) record merging (to normalize some expressions), (3) future usage 
count analysis (to determine when a value will be no longer used), and (4) translation to 
C99 abstract syntax with destructive updates as permitted by analysis.   As of the end of 
project we had not completed proof-emission enhancements for these 
subtransformations. 
 

3.7 Other Transformations 
 
The transformations discussed in previous section were new in Crash and focused on 
transforming coalgebraic aspects of our specifications.    Several other transformations 
were applied and further developed in the project, and we discuss those below. 
 

3.7.1 Simplification	
 
The most basic optimizing transformation is context-sensitive simplification.   The idea is 
simple:  an expression is simplified by first gathering contextual properties and then 
applying conditional equational rules to find a “simpler” form modulo context. 
 
An interesting phenomenon was revealed during the project regarding the difference 
between simplification of algebraic/functional expressions and coalgebraic/state-



50  

changing expressions.  In functional expressions, the simplest form is another 
expression that takes less time/space to evaluate (at runtime) to a value.   This kind of 
simplification is often carried out by symbolic evaluation at design-time, ideally to a 
constant.   In state-changing expressions, the ideal is minimal state change.  This 
distinction arose in our derivations and can be illustrated in the following example: 
 

op f(st:State | obs st = 0): {st’:State | obs st’ = obs st} 
 
where obs is a Nat valued observer of State.  Our simplifier at first replaced the 
postcondition by  

obs st’ = 0 
which ultimately is implemented as an assignment of 0 to the observer.   However, this 
“simplification” ignores the information in the constraint that the observer is unchanged 
by f, so the postcondition as it stands is in simplest form.   It should ultimately be 
implemented as a no-op in this case. 
 
In the functional world, values are created from other values.  In the side-effecting 
world, progress is characterized by making minimal changes to the current state.    
 
3.7.2 Type	Isomorphism 

The type isomorphism transformation refines one type T into an isomorphic type T’ with 
appropriate translations of operations involving T.    We extended it to handle previously 
unhandled cases; specifically isomorphisms on types with multiple parameters, such as 
Map(a, b) and relaxing the requirement that the types be named types. Also in order to 
complete the isomorphism transformation in our garbage collection derivations we 
needed to supply extra distributive laws. 
 
3.7.3 Partial	Evaluation 

We also implemented a Partial Evaluation transformation.  Its effect is as follows.  
Suppose that we have a specification that includes a definition 
 
   def f(x:D):R =  G[e(0,x), x] 
 
where f is defined by some term G that include a function call to e with a constant 
argument (here the constant is 0, but all that matters is that it is a constant).  Partial 
Evaluation optimizes the definition by evaluating as much of it as possible at design 
time – by applying domain theorems to simplify terms.  As a very simple example, if e 
were simple addition, then we could partially evaluate the expression 0 + x to x, 
resulting in (slightly) faster code.   
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3.8 Proof Emitting Transformations 

Proof-emitting transformations was a key innovation that we began developing in the 
Crash project. Figure 6 illustrates/diagrams our approach to proof-emitting 
transformations and their role in generating refinements and proofs. The figure depicts 
the action of applying transformation T to specification A.   The result is a generated 
refinement from A to B, represented by morphism σ.  Moreover, the transformation 
generates a proof term that can be used to discharge the proof obligation of the 
refinement. 

Conceptually, we treat a transformation as a mapping from (the abstract syntax of) a 
specification A to a triple that includes (1) a specification morphism σ, (2) the 
refined/target specification B, and (3) a proof term.   The proof term is a summary of the 
calculations performed in generating B from A.   Specware provides a general proof-
obligation-generator utility that maps a specification morphism, such as σ, to a 
Metaslang formula that expresses its proof obligations (i.e. that the axioms of B imply 
the axioms of A modulo the translation induced by morphism σ).    The intent of the 
proof term generated by a transformation is that it can discharge the proof obligations of 
the generated morphism.    

The goal here is to have an independent proof-checker verify that the proof term 
generated by the transformation does indeed prove the obligations generated by the 
proof-obligation-generator.    One feature of the structure of Figure 6 is that the left-hand 
side is independent of the proof-checker.   We wanted the freedom to build translators 
to any proof-checker that was rich enough to express the Metaslang logic. As an 
independent proof-checker we chose Isabelle since we already had a partial translator 
from the Metaslang logic of Specware to the Isabelle/HOL logic.   The following 
subsections describe several of the issues that arose in realizing this overall approach 
to generating proof-carrying code. 
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Figure 6: Proof-emitting Transformation 
 

3.8.1 Instrumenting	transformations	to	record	calculation	chains	

We extended many of our library transformations to generate proof terms.  During the 
course of the project we tried a sequence of approaches to the structure of the proof 
terms.   Our first attempt was to record the sequence of equations used in a rewrite rule-
based simplification.   This was sufficient for several transformations, but couldn’t 
handle the proofs involving recursive transformation of terms.   Our second approach 
was to define transformation-specific datatypes to record transformation steps.   After 
instrumenting several transformations this way, it became clear that there were many 
commonalities and we felt the need (and possibility to define) a uniform representation 
of calculations performed by transformations.    Our third approach was to develop a 
uniform proof representation for all transformations.  A portion of the definition of our 
proof term specification is: 

type ProofInternal =  
    | Proof_UnfoldDef (MSType * QualifiedId * MSVars * MSTerm * MSTerm) 
    | Proof_EqSubterm (MSTerm * MSTerm * MSType * Path * ProofInternal) 
    | Proof_EqSym ProofInternal 
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    | Proof_EqTrans (MSType * MSTerm * List (ProofInternal * MSTerm)) 
    | Proof_ImplTrans (MSTerm * ProofInternal * MSTerm * ProofInternal * MSTerm) 
    | Proof_ImplEq ProofInternal 
    | Proof_Cut (MSTerm * MSTerm * ProofInternal * ProofInternal) 
    | Proof_ImplIntro (MSTerm * MSTerm * String * ProofInternal) 
    | Proof_Assump (String * MSTerm) 
    | Proof_ForallE (Id * MSType * MSTerm * MSTerm* ProofInternal * ProofInternal) 
    | Proof_EqTrue (MSTerm * ProofInternal) 
    | Proof_Theorem (QualifiedId * MSTerm) 
    | Proof_Tactic (Tactic * MSTerm) 

 

where, for example,  
• Proof_UnfoldDef (T, qid, vars, M, N) is a proof that  fa(vars) M=N at type T by 

unfolding the definition of qid, 
• Proof_EqSubterm(M,N,T,p,pf) is a proof that M = N : T from a proof pf : M.p = 

N.p, where M.p is the subterm of M at path p 
• Proof_EqSym(pf) is a proof that N=M from pf : M=N 

and so on. 
 
To give a sense of the details, consider the following rewrite steps performed in one of 
the Crash derivations: 

{ 1: allOutNodes_of_addSupply } 
       allOutNodes (addSupply H nid) (Set.set_insert(nid, black H)) 
—-> allOutNodes H (Set.set_insert(nid, black H))   
{ 2: distribute_allOutNodes_over_set_insert } 
        allOutNodes H (Set.set_insert(nid, black H))   
—->  allOutNodes H (black H) \/ outNodes H nid 
{ 3: Set.associative_union } 
         roots H \/ (allOutNodes H (black H) \/ outNodes H nid) 
—->  (roots H \/ allOutNodes H (black H)) \/ outNodes H nid 

 
which is stored as the following proof term 
  

EqTrans(Bool,  
       roots H \/ allOutNodes H (black H) \/ outNodes H nid,  
           [Sym(Theorem(Set.associative_union,  
                    roots H \/ (allOutNodes H (black H) \/ outNodes H nid)  
                      = roots H \/ allOutNodes H (black H)  \/ outNodes H nid)),  
                 roots H \/ (allOutNodes H (black H) \/ outNodes H nid),  
        EqSubterm(roots H \/ (allOutNodes H (black H) \/ outNodes H nid),  
                  roots H \/ allOutNodes H  (Set.set_insert(nid, black H)), Bool, [1],  
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                           Sym(Theorem(distribute_allOutNodes_over_set_insert,  
                                       allOutNodes H  (Set.set_insert(nid, black H))  
                                        = allOutNodes H (black H) \/ outNodes H nid))),  
                 roots H \/ allOutNodes H (Set.set_insert(nid, black H)),  
        EqSubterm(roots H  \/ allOutNodes H  
                        (Set.set_insert(nid, black H)),  
                  roots H   \/ allOutNodes(addSupply H nid)  
                        (Set.set_insert(nid, black H)), Bool, [1],  
                  Sym(Theorem(allOutNodes_of_addSupply,  
                              allOutNodes(addSupply H nid) (Set.set_insert(nid, black H))  
                               = allOutNodes H  (Set.set_insert(nid, black H))))),  
                  roots H \/ allOutNodes(addSupply H nid)  (Set.set_insert(nid, black H))]) 
 

and is then rendered into the Isabelle/Isar proof-script language as  
Isabelle/Isar proof script 
 

have subeq100:  
     "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid  

        = roots H  \/ allOutNodes (addSupply H nid) (Set__set_insert(nid, black H))" 
 proof -  
   have "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid  
           = roots H  \/ (allOutNodes H (black H)  \/ outNodes H nid)"  
     proof -  
       have symeq95:  
             "roots H \/ (allOutNodes H (black H)   \/ outNodes H nid)  
          = (roots H \/ allOutNodes H (black H)) \/ outNodes H nid" 
         proof -  
           show "?thesis" by (auto simp only: Set__associative_union) 
         qed  
       show "?thesis" by (rule symeq95[symmetric])  
     qed  
   also 
   have "... =  roots H  \/ allOutNodes H (Set__set_insert(nid, black H))"  
     proof -  
       have subeq97:  
             "allOutNodes H (black H) \/ outNodes H nid  
                = allOutNodes H (Set__set_insert(nid, black H))" 
         proof -  
           have symeq96:  
                 "allOutNodes H (Set__set_insert(nid, black H))  
                    = allOutNodes H (black H)   \/ outNodes H nid” 
             proof -  
               show "?thesis"  
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                 by (auto simp only: distribute_allOutNodes_over_set_insert) 
             qed  
           show "?thesis" by (rule symeq96[symmetric])  
         qed  
       show "?thesis" by (rule arg_cong[OF subeq97])  
     qed  
… 
   finally (HOL.trans) 
   show "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid  
           = roots H \/ allOutNodes (addSupply H nid) (Set__set_insert(nid, black H))" . 
 qed 
 

3.8.2 Translator	from	Metaslang	logic	to	Isabelle	logic	
 
We extended an existing partial translator from Metaslang to Isabelle for two purposes.   
One was to translate refinement obligations and the other was to translate our proof 
terms into proof scripts that could be checked against the translated proof obligations. 

Many aspects of the translation between these two higher-order logics were 
straightforward.   However, completing this translator turned out to be trickier and take 
longer than expected.  One key issue was translating Metaslang specs into Isabelle 
specs, and a special case is the translation of Metaslang formulas to Isabelle formulas.    
This was a source of ongoing difficulties since the Metaslang and Isabelle logics are 
similar but have many detailed differences.    We worked on resolving two such 
differences:  since Isabelle does not support predicate subtypes (including dependent 
types), we need to include the predicates from such types into the translation of a 
Metaslang expression, typically as an antecedent.  We explored several variants of 
whether the antecedent should be normalized to the top level, or kept locally to preserve 
structure.     
 
Another difference is that Isabelle does not support a name translation operation, while 
it is a basic operation on Metaslang specifications.  This is a difficult feature to handle 
since the name translation must be applied recursively through the entire import 
structure of a specification. We completed work on handling the name translation 
operation on the Metaslang side.    Since Isabelle doesn’t have this feature, our 
translator from Metaslang to Isabelle had to perform a recursive copy-and-modify on the 
entire import structure of a specification and pass the whole structure to Isabelle, rather 
than appealing to Isabelle built-in specifications.   This work was a part of the larger goal 
of supporting the generation of proofs that discharge automatically generated proof 
obligations for refinement steps.   We continued to work on extending the Observer 
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Maintenance and Observer Implementation transformations to emit proofs at application 
time. 
 
Another difference:  We worked on improving the generation of Isabelle proofs from 
transformation sequences. The proofs include references to particular subterms that get 
transformed.  These are indicated by their path from the root of the term.  However, 
translation to Isabelle does not always preserve the term structure. In particular, in 
quantified expressions subtype predicates are added which can mess up the 
subexpression paths. We made the translation more robust by exploiting the fact that 
these predicates are always conjoined at the beginning of a sub-formula.   We made 
changes to our translator from Specware logic to Isabelle logic to reflect the use of 
named predicate subtypes – previously the translation was losing the predicate subtype, 
thereby some proofs to fail.    
 
Another difference/change:  support type refinement such as occurs during the 
finalizeCotype transformation where a previously abstract type is refined to be a record 
type. Isabelle requires that type symbols and their definitions be introduced at the same 
time, which a refinement system like Specware does not. To support this we introduced 
a transformation to explicate the previously-implicit morphism that arises when a type 
symbol is defined later than its introduction in a Specware spec. The morphism is 
between the spec with the abstract type and the spec with the defined type. The 
obligations of the morphism are that the axioms on the abstract type are theorems on 
the defined type. In the case of finalizeCotype, the relevant axioms are that the post-
conditions of the state transformers are true given their preconditions. These pre- and 
post-conditions are preserved in the final spec so the obligations are trivially true. The 
finalizeCotype transformation also provides bodies for the functions specified by pre- 
and post-conditions, so we also have the obligation that the bodies satisfy post-
conditions given the pre-conditions, which follows simply given that the bodies are 
mechanically derived from the post-conditions. 
 
Another extension:  The Specware rewrite engine includes some built-in speculative 
transformations such as expanding let bindings and pushing functions inside if-
expressions that may enable the application of the main transformations. We extended 
the proof-emission capability to take account 
 
We also revised our approach to a key problem in generating Isabelle proof scripts.   
The problem has to do with the straightforward notion of substitutivity:   
 
     if x=y then f(x)=f(y) 
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When we transform an expression f(x) by simplifying its subterm x to y, then we want a 
proof that f(x)=f(y).   The problem has been identifying to Isabelle which subterms x and 
y are equal, since the paths to the subterms are typically modified during our translation 
from Specware to Isabelle.   Previously we had been explicitly giving the context/path to 
x by means of a lambda 
    lambda(v)f[v] 
to indicate the hole where the subterm x occurs.   We found a simpler solution in using 
the argCong mechanism of Isabelle, which automatically searches for the subterms x 
and y and then infers the desired result f(x)=f(y).    This helps in pushing through the 
proofs emitted by our finalizeCotype transformation. 
 
Another problem has to do with the handling of conditional rewrites.   In addition to 
conveying the condition of the rewrite to Isabelle, sometimes the variables are 
quantified over a subtype, so the subtype effectively becomes an additional condition.  
We extended our translation mechanisms accordingly. 
 
Another problem arises due to the use of speculative rewriting in the rewrite engine.   
Some rewrites may not improve the code so they are applied speculatively, and if they 
do not enable an improvement, then they are withdrawn and rewriting continues.    
Obviously we do not want that backtracking reflected in the generated proof structure, 
so we added a mechanism to detect backtracking and to produce a proof script 
reflecting the actual path to the transformed results. 
 
Several other improvements to our translation from Specware/Metaslang to Isabelle.   
First, the translate construct is used to rename symbols from an imported theory.   For 
example, the theory of linear orders might have its type renamed `time’ in order to 
provide a simple appropriately named theory of time.   The translate construct though 
caused an exponential blowup of copying in our previous implementation, so we needed 
to cache translated imports to avoid duplication.   This problem only arose as we 
introduced a monad for formalizing the interleaving of threads that we need to specify 
and reason about the concurrent execution of mutator and collector.   We also fixed 
errors in our spec-substitution construct, which was causing problems in translating 
proof terms from Metaslang to Isabelle.   The solution was to apply substitutions to 
specs but not the spec-element terms, but instead to regenerate them, exploiting 
context. 
 
We continued to develop and store proofs with theorems for the specs in the Specware 
library.   The derivations invoke theorems from imported specs to perform rewrites and 
the generated Isabelle proof scripts depend on those library proofs. 
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3.8.3 Locales	for	capturing	proofs	of	library	refinements	

 Some refinements are generated by composing a library refinement with an 
application-domain specification by a pushout operation (realized by Specware’s 
substitute operator).   In this case the proofs of the library refinement are expressed in 
terms of the domain and codomain symbols, but we want a proof in terms of the 
application-domain specification.   In other words, we needed a uniform way to generate 
proofs when the refinement works by pushout/substitute rather than by the specification-
specific calculations that other transformations use.   One approach is to use Isabelle’s 
locale mechanism which allows a kind of generic proof that can be instantiated in a way 
that mirrors a specification pushout/substitution.   Rather than include the details, we 
refer the reader to the technical note [Kreitz12] which shows how to develop a locale for 
the fixpoint iteration algorithm theory discussed above. 

3.8.4 Proof	Script	Generation	
 
We designed a mechanism to augment the transformations used in the CGC derivations 
so that they both generate a refinement and emit proofs.  The ISAR interface to Isabelle 
provides a format for calculational proofs that clearly reflect the equational reasoning 
carried out by our transformations.  To illustrate, if we perform a calculation of the form 
 

A = B         by rule r1 
   = C         by rule r2 
   = D         by rule r3 
so A=D. 

 
then we can generate an Isar/Isabelle proof script of the form (where some detail is 
elided) 
 

proof 
  have             "A   
                             =  B"           by (… rule r1 …) 
  also have      "... =  C"           by (… rule r2 …) 
  also have      "... =  D"           by (… rule r3 …) 
  finally have : "(A = D)" . 
qed 

 
This proof script can then be automatically checked by Isabelle.  This means that an 
external certifying authority need not trust our transformations.  Instead, we will be able 
to generate both code and proof (i.e. proof-carrying code), and let the certifiers have the 
mathematical evidence that the code meets its requirements, which they can check, 
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independently and cheaply.  We have some simple cases working now and plan to 
expand coverage to include most, if not all, of the transformations used in the derivation 
of our collectors.  This process will be spread over several months, since each 
transformation must be augmented with code to emit proof scripts in the above form.  A 
parallel effort is also required to build up the proofs for basic theories in Isabelle and 
discharge the theorem in our domain specifications; e.g. we must have a proof of rules 
r1, r2, and r3 in the example (which is trivial if they are axioms). 
 
To be clear, Specware’s transformations automatically carry out the calculation, and our 
objective for the next month is to have them also automatically generate the 
corresponding Isar proof script.  This means that each generated refinement also has a 
generated proof that discharges its obligations, without having to perform a post-hoc 
proof search.   The Isar proof script is formulated to put Isabelle on a very tight leash – 
its proof steps are tightly controlled, so that it will not get in trouble by attempting to 
search.  After all, the transformation knows the structure of the calculation, so that is 
reflected in the proof script.  We believe that this approach to proof generation will be 
dramatically more economical than post-hoc verification. 
 
We worked on a general mechanism for generating proof scripts (expressed in the ISAR 
dialect of Isabelle) from a derivation script.  Since most of our transformations work by 
chaining equations, we worked to capture this form of calculation in a generic way.   
Some of the details include the need to specify which subterms to perform matching on 
so that Isabelle as a proof checker doesn’t need to search, and the need to relate the 
results of equational calculation to the implicational proof obligations that are generated 
for refinement steps in Specware.   Since some of the transformation steps involve 
inequalities (versus equations), a next step is to find a way to output proof scripts with 
implication chains rather than equation chains; i.e. A⇒B⇒C⇒D, so A⇒D, rather than 
the equational chain a=b=c=d, so a=d. 
 
We streamlined the presentation of the proofs in ISAR.  A typical calculation is focused 
on a subexpression s of a function or axiom e, so the proof should be presented mainly 
at the level of s rather than e.  The calculated change to s is finally shown to result in 
the desired change to e.  One problem with emitting proof scripts during specification 
transformation is that Isabelle doesn’t support type symbols that are introduced but not 
defined.   It is a recurring problem that Isabelle wasn’t built to support refinement 
processes.    We worked on this issue. 
 
We converted over to using Isabelle 2013, which now requires coercions between sets 
and predicates (previously they were equal rather than isomorphic).   This entailed 
change to the proofs of our base libraries as well as changes to our translator from the 
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MetaSlang logic to Isabelle’s logic.  We continued to work on coalescing variant theories 
in our library, and introduced new specs for bounded natural numbers and integers.  
This allows us to specify, say, Nat16 for 16-bit natural numbers, which translates to 
uint16 in C.  Another aspect of this task is maintaining proofs for all theorems in the 
library specifications.   The change to Isabelle 2013 entailed some work to re-establish 
theorems, mainly by modifying some theorem’s proof tactic.  We found that there were 
about 10-15 theorems per specification that needed to be reproved. 
 
We also began work on a new abstract syntax for recording proof information at 
transformation-time.   The goal is to have all transformations in our library record the 
calculations and decisions that they make in this proof structure.   We would then be 
able to uniformly translate from this proof structure (in MetaSlang) into the proof 
language of a proof checker (Isabelle for now).  We extended our proof language to 
include more information in proof objects, such as errors and context.  We made the 
actual theorem to be proved more explicit in the proof object, which was needed to 
support better proof combinators. 
 

3.9 Specware Infrastructure 

We extended Specware’s infrastructure in a number of direction to support the 
coalgebraic specifications and their refinement. 

We improved Specware’s transformation for Isomorphic Type-refinement, so that it 
handles patterns.  We improved the rewriter's handling of curried functions.  We 
modified Specware's type-checker algorithm to generate type-coercions, which means 
fewer proof obligations are generated.  We improved printing of Specware specs and 
terms, and improved the efficiency of code generation for both in time and space usage.  
We extended the type-checker so it could infer tighter sub-types for the results of ops 
with specialized inputs. We added indirection construct to pragma language to allow 
proofs to be separated from specs, so the specs are more readable.  We improved the 
proof obligation generated for a refined op so that it is easier to prove – making the 
obligation extensional and including subtype conditions of argument variables. 
 
We implemented a version of function unfolding that works with functions specified 
using pre and post-conditions, by combining the postconditions.  We also adapted the 
common expression abstraction tactic to work properly with assignment statements. 
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3.9.1 Higher-Order	Matching	Algorithm	
 
We implemented a feature in the higher-order matcher where it avoids generating 
subgoals for a subtype mismatch that could be discharged by subtype obligations. 
Previously, if the term being matched had an associated subtype obligation, to show the 
rule matched, one would have to prove the obligation was true using the rewriter. This 
was at best inconvenient. Now we assume that obligations are proved in Isabelle. 
 
We fixed type matching in Specware’s higher-order matcher – a type variable is now 
bound to the least supertype of all the types it is matched against.   We also made 
changes to the Isabelle translator since, in some cases, it was not extracting composite 
subtype predicates correctly for nested subtypes.  We also needed to rationalize the 
ordering of the extracted predicates.   
 

3.9.2 Support	for	calculation	

Support for calculational inference was extended from equational to handle conditional 
equations and to handle strengthening of propositions (e.g. the Observer Refinement 
calculation above). 

3.9.3 Tactic	language	
 
We also modified the transformation script language to make it simpler to read, write, 
parse, and automatically generate scripts.  This has allowed us to reformulate several 
existing transformations into the following normal form:  generate a derivation script and 
then run it.  This normal form has several advantages:  

1. it replaces the writing of arbitrary metaprograms that manipulate abstract syntax, 
2. it extends the range of people who can write transformations 
3. it prepares the ground for emitting proofs as a by-product of transformation. 

 

We extended the scripting language to support verbatim text for generating into 
CommonLisp.  This allows us to add Lisp-specific instrumentation, monitoring, and other 
support code as an integral part of the derivation script.   We fixed the error handling for 
transformation moves that fail, so an error message is presented instead of going into 
the debugger. 
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3.9.4 Transformation	Support	
 
We improved Specware’s transformation language machinery so that it is easier to add 
new transformations both for spec-level transformations and term-level transformations. 
Now, it is only necessary to define the transformation as a function with a suitable type, 
without having to add special interface code to the transformation engine. 
 
We added support for user-defined transformations. Previously, adding a new spec 
transformation function would involve changes to the transformation language parser.  
We have now implemented a scheme whereby the signature of the transformation 
function determines the syntax in the transformation language. This makes it much 
easier for developers to incorporate new transformations into the transformation 
language, especially when the transformation has multiple options and lists of rewrite 
rules or functions as arguments. To implement this interpreter capability we had to 
augment the code generator to output type information for transformation functions so 
its arguments could be interpreted at run-time. As the interpreter has to work with 
objects of multiple types, we needed to tag values with their type and provide an 
interface to the transformation functions that accepts these tagged values. 
 
The basis of the transformation system extension is to have the signature of the 
Specware transformation function determine the syntax of its use in the transformation 
language. For example, 
 

 op MSTermTransform.rewrite: Spec -> PathTerm -> RuleSpecs      
                     -> RewriteOptions -> MSTerm 
 type RewriteOptions =  
    {trace     : Nat,         % Trace level 0, 1, 2, 3 
     debug? : Bool,        % Debug matching of rules 
     depth    : Nat}         % # of rewrites allowed 

 
is the (slightly simplified) signature of a rewrite transformation that transforms the 
current term using a list of transformation rules and with three options. The 
“MSTermTransform.” qualifier tells Specware that this is a term transformation. The 
spec and the term are implicit, i.e. given by the current transformation context. The 
syntax for using this in a transformation sequence is, for example:  
 
 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true]  
         {trace = 2, debug?= true, depth = 5} 
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where unfold open?  is the rule for unfolding the definition of open? and lr thm takes an 
equality theorem thm as a left-to-right transformation rule. The system allows for 
defaults everywhere so the options between braces can usually be completely omitted, 
or any subset can be specified. E.g. 
 
 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true]  
 
or 
 
 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true] {depth = 5} 
 
or just 
 
   rewrite 
 
which just uses the built-in simplification included in the rewriter without any rewrite 
rules. 
 
Previously, allowing all these syntactic options had to be specifically programmed, so 
changing an interface, in particular adding options, was a significant amount of work 
that required knowledge of the internals of the syntax system. Having the syntax 
automatically follow from the signature makes it easy for any Specware user to add new 
transformations or extend existing ones. 

3.9.5 Tracing	support	
 
We also made improvements to the transformation system so that it prints out a much 
better focused presentation of its (mostly) equational calculations. 

3.9.6 Specware	Library	
 
We coalesced several variants of specifications for finite sets, bags, lists, maps, stacks, 
as well as standard refinements of them.  We extended the Specware specification 
libraries with more proofs of theorems, which are used to support calculations at 
program-synthesis time.    
 
We improved the Specware DataStructures library, with an emphasis on pushing the 
proofs through Isabelle and fixing any issues revealed in the process. The 
DataStructures library defines and refines container data structures, including Sets, 
Bags, Maps, etc. We added many Isabelle proofs (including proving quite a few new, 
generally useful auxiliary properties).  Perhaps the most interesting proofs were those 
justifying the correctness of the refinements (expressed as morphisms) of various 
structures in terms of the others, many of which make heavy use of 'fold' operations.  
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The library work is still ongoing, but the Sets and Bags libraries are now completely 
proven. 
 
We also refurbished many of the specs in the Crash repository, to get them working with 
the latest version of Specware and its libraries.  We also worked on Specware 
documentation, testing, and miscellaneous maintenance tasks and improvements (e.g., 
modernizing the syntax of important specs). 

3.10 Generator of imperative code 

We looked at the problem of generating imperative code from monadic code using a 
state monad, and studied the literature on this subject, particularly in the context of 
Haskell. We created a prototype implementation of one approach that involves unfolding 
all the monadic functions and simplifying the result to get rid of their overhead and 
hand-implementing some low-level functions as assignments. This was largely 
successful, with some further work being necessary to remove some remaining 
overhead. This transformation required some minor extension to the matching 
component of the transformation system to handle a sequential composition pseudo-
function. 

However, we are also exploring an alternate approach to achieve the same end.  Our 
analysis suggests that it is may be more straightforward to perform single-threadedness 
analysis on the low-level design and then translate the specifications directly to 
imperative code.  

Towards a C generator, we are constructing a sequence of specification transformations 
that correspond to compiler passes and that are intended to be simple enough that we 
can augment them to emit proofs at application time.   We completed transformations 
for linearizing nested terms in single-threaded state transformer definitions and related 
code needed to prepare for globalizing the single-threaded state in our coalgebraic 
operations.  We made numerous other internal improvements.    We worked on issues 
related to handling pattern-matching in the compiler – since C doesn’t support patterns 
for de/construction, there is no direct translation of this feature of MetaSlang, so special 
control mechanisms are needed to handle matches that partially succeed before failure.  

We extended earlier work to propagate type information through our abstract syntax 
trees so that ambiguous constants (such as 1) can be consistently typed when passed 
to C.   We made many internal improvements in support of C generation.     We worked 
to generalize and clean up the transformation sequence that generates C (about 23 
transformations), and to develop a compilation specification that allows expressing 
some C-specific information:  import files, native library types and functions that are 
used in the MetaSlang specification, translation of field names, and any special-case 
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definitions. During this period we were able to generate, compile, and run idiomatic C 
code on some sample specifications written in our mixed algebraic/coalgebraic style.  

3.10.1 Language	Morphisms	

Language morphisms are a generalization and formalization of what had been ad-hoc 
features for translation to Isabelle and Haskell.  Special ``translate'' pragmas within a 
spec can now be used to define language-specific rules for translating Specware types 
and ops.  These pragmas now have an internal structure that is parsed in a very generic 
manner to obtain five kinds of information: 

3.10.1.1 Imports	
  This section simply lists a sequence of files to be imported into the generated target 
file.  For example, a translation to C might include: 

-import 
  stdlib.h   % boilerplate 
  linux/udp.h % structures specific to UDP protocol 
  mycode.h   % interfaces to ad-hoc application-specific code 

3.10.1.2 Verbatim	

This section is intended to be used sparingly, but provides an escape mechanism to 
insert arbitrary text verbatim into the target file.  It is intended to handle ad-hoc problems 
that resist a generic solution. 

 For example, the * operator in C is a function and can be modeled relatively simply 
within Specware, but & is not a function since substitution of equals for equals fails.  
There thus is no simple way to target C expressions headed by &, but some special 
cases can be handled on an ad-hoc basis by allowing Specware operators to map to C 
macros that include &.  For example: 

-verbatim 
  #define atomic_read_at(x) (atomic_read(&x)) 
 
Verbatim text may create problems for verification, but it isolates such problems to a 
small set of clearly identified operators. 

Also, because such verbatim text must appear declaratively within the specs being 
used, those that lack such tricks can be known to be free of such problems — there is 
no programmatic mechanism secretly including such tricks as part of the translation. 
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3.10.1.3 Translate	

This is the main section, and provides for translation of specware names (for types, ops, 
and field references) to target names or terms, along with an indication as to the 
location of the target (primitive/syntactic or file  location).  Translations to complex terms 
are implemented as target macros. 

-translate 
  type Nat.Nat32    -> uint32_t      primitive 
  op Nat.BVAND32    -> & infix     primitive 
  type udp_table    -> struct udp_table  in net/udp.h    
  field udp_table.csum  -> udp_table.check   in net/udp.h 
  op Null_ID      -> ((Sock_ID) NULL)    macro 
  op sizeof_udp_hdr   -> sizeof (struct udphdr)  macro 

3.10.1.4 Native	

  This section provides a simpler form of translation where the named type or op is 
assumed to translate directly to the same name in the target. 

-native 
 op ntohs in /drivers/staging/rtl8712/generic.h 
 op udp_hdr in linux/udp.h 
 

Language morphism pragmas for any given spec are collected recursively through all 
imported specs, making it possible to distribute the language-specific translation rules 
for types and ops into the local contexts where they are introduced or defined.  
Alternatively, the translations could be handled en-masse by one pragma in the top-
level spec, for example if one wished to have alternative top-level specs with different 
rules targetting different compilers. 

Future work could easily validate that a type or op declared to be in a target file was at 
least nominally present there.  With language-specific parsing of the target files. it would 
be possible to verify appropriate typing, etc. 

3.10.1.5 Slices	

A perennial problem with processing specs has been that each processing context may 
be concerned with just some aspects of a spec, requiring ad-hoc code to determine 
which elements of the spec to process and which elements to ignore, making such 
processing fragile and hard to maintain as Specware evolves. 
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One aspect of this problem is that alternative notions such as defined, executable, 
implemented, primitive, hand-coded, etc. have tended to be conflated within such 
processing code, sometimes confusingly (and even inappropriately) using the same 
tests in contexts where slightly differing ones were needed. 

There also were early attempts to create more manageable artifacts by simply 
subtracting out undesired portions of a spec, however this led to ill-formed specs that 
contained the information of interest but were missing semantically important theorems, 
subtype predicates, etc. 

Slices provide progress towards a generic solution to this problem by layering filters 
over specs to provide ad-hoc tailored views.  They leave the spec itself unaltered but 
add tables describing which elements of the spec have various desired attributes.  Each 
particular processing context can then view the spec through such a filter, simplifying 
the processing context while avoiding logical problems associated with ill-formed specs.  

3.10.2 Concurrency	Support	

We implemented a new AddMutexes transform that is restricted to generating mutexes 
for primitive transformers (procedures) that affect an invariant – the effect of the mutex 
is to ensure that the invariant is never observed to be violated.   Our intention is to first 
generate coarse-grain mutexes that produce large but correct atomic regions, then to 
introduce concurrency-improving transformations that break large-grain regions 
correctly into finer-grain regions. 

We are exploring two approaches to formally representing the top-level specification of 
a collector and a mutator and proving the safety and progress of their concurrent 
execution.  Challenges arise due to the natural interference of each component with the 
other, and their concurrent execution.   To model the interference and relative 
noninterference we use rely conditions in the form of transition invariants that each 
component assumes about its environment (i.e. the other component).   The Collector 
assumes that dead nodes are increasing monotonically by the action of the 
environment, and the Mutator relies on the invariant that the live nodes on the heap are 
isomorphic from moment to moment.   

One approach to formalizing these rely conditions and to proving safety and progress 
was presented earlier in Section 3.   A second approach is based on a monadic 
formulation of the mutator and collector as state machines whose execution steps 
correspond to atomic actions and whose execution can be given an operational (vs 
denotational) semantics via interleaving of the atomic steps.   This approach allows us 
to specify the system architecture as the concurrent execution of two state machines, 
while allowing our existing derivations in Specware to generate the low-level code for 
the atomic steps.   The monadic structure provides the control structure and interleaving 
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of execution steps.    Our ongoing efforts are (a) to reconcile the elegant proofs afforded 
by the algebraic approach, with the more automatable monadic approach, and (b) to 
complete the specification of the system and link it to our several derivations of garbage 
collection algorithms. 

We continued to develop and store proofs with theorems for the specs in the Specware 
library.   The derivations invoke theorems from imported specs to perform rewrites and 
the generated Isabelle proof scripts depend on those library proofs.   In several 
instances we found the need to add conditions to theorems to enable proofs.   This then 
requires ensuring that the mutator and collector operations have pre/post-conditions 
strong enough to discharge those new conditions. 

 

3.11 Flex Seedling 

3.11.1 Executable	Prototype	

In order to run tests and experiments early in the project, we started by writing an 
executable specification of a simple resolution theorem prover. This simple theorem 
employs a saturation algorithm that exhaustively applies binary resolution and factoring 
to the input set of clauses until (1) a contradiction is derived (in which case the original 
conjecture is proved), or (2) the set of clauses is found to be satisfiable (in which case 
the original conjecture is not provable), or (3) a resource limit (provided as input) is 
reached (in which case the original conjecture may be provable or not). 

As we started testing this simple prover, we confirmed the need, in order to run 
sufficiently interesting examples, to extend the simple prover with the following features, 
which are quite standard in resolution theorem provers: 

• Tautology Removal. A tautology is a clause that includes a literal and its 
negation. Tautologies are always true and do not contribute to the proof goal, 
and can therefore be safely eliminated as soon as they are generated. 

• Subsumption. A clause subsumes another one when the former is more general 
than the latter, i.e. the latter can be directly derived from the former. Subsumed 
clauses do not contribute to the proof goal and can therefore be safely eliminated 
as soon as they are generated – this is forward subsumption, i.e. when a newly 
generated clause is subsumed by an old one. Backward subsumption occurs 
when a newly generated clause subsumes an old clause: in this case, the old 
clause can be safely eliminated while the new clause is retained. 
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• Set of Support. Set-of-support is a technique to restrict binary resolution to only 
resolve two clauses picked from two different sets: (1) the set of hypotheses; and 
(2) the set consisting of the negated conclusion and of the resolvents generated 
so far. The latter is the ‘set of support’. The rationale is that the hypotheses are 
expected to be consistent, but contradictory with the negated conclusion: thus, 
resolving clauses from the hypotheses should not contribute to the proof goal; 
the contradiction must involve the negated conclusion and its descendants. 

• Demodulation. Demodulation is a technique to handle equality formulas 
efficiently. In principle, equality can be handled by adding appropriate equality 
axioms to the hypotheses, but this is generally inefficient because of all the 
congruence axioms needed for the functions and predicates that appear in the 
hypotheses (given that a resolution prover operates on first-order logic). With 
demodulation, equality singleton clauses are used as rewrite rules for terms. 

3.11.2 Pre-Filter	Optimization	

With the executable Flex prototype in hand, we proceeded to try and apply various 
optimizing transformations to the prototype. All the transformations operated 
automatically, but they were manually applied, i.e. we chose which transformations to 
apply and the parameters to supply to each transformation application. This was an 
exploratory activity, before building facilities to automatically choose the transformations 
to apply and the parameters they apply. 

As first target for our optimizations, we looked at the unification algorithm of Flex. In 
resolution theorem provers, unification is a fundamental procedure that is used as part 
of binary resolution: candidate literals to be resolved are unified before being resolved. 
Since unification is one of the most heavily used procedures in a resolution theorem 
prover, it is a good candidate for optimization. 

A pre-filter is a necessary condition for the successful evaluation of some other, more 
expensive condition. In this case, the unification operation (“is there a substitution that 
makes two terms equivalent?”) can be expensive to compute because it involves 
creating possible substitutions and checking consistency of variable assignments. A fast 
pre-filter can test whether the skeletons (e.g., the trees of function calls and constants 
that appear in the terms, ignoring variables for the moment) of two terms are such that 
they might unify. If not, there is no reason to spend the time building up substitutions, 
because the unification will ultimately fail. Such strengthening or weakening is important 
for other optimizations such as deriving pruning tests in search algorithms. 

We explored several versions of a pre-filter for the unification algorithm. In doing this we 
tried to simulate what an automatic search algorithm could do when looking for 
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optimizations of this kind. Running test cases showed that some of these generated 
pre-filters could lead to significant speed-ups for certain unification problems, whereas 
in others the speed-up was less than the added overhead. From this exploration it does 
appear that pre-filter optimizations could be automatically derived and proved using a 
generate-and-test approach with a fairly naive generation strategy. 

We derived a fast-fail pre-filter for unification, using our transformation system. The pre-
filter allows the operation to fail quickly in the common case where the terms being 
unified do not match.  In particular, it causes unification to fail if the structure of the 
terms is such that they could not possibly match, and it does this quickly, without 
bothering to build variable substitutions and check them for consistency.  If the 
attempted unification passes the pre-filter, the full unification algorithm is invoked. 

Our derivation of the fast-fail pre-filter for unification consists of a sequence of 6 
automated transformations: expand-lets, wrap-branches, simplify-body, strengthen, 
drop-function-from-nest, and drop-irrelevant-parameters. Each invocation of a 
transformation is short (often just a single line) and produces a new mutually-recursive 
set of predicates (usually three predicates: for attempting to unify a term, a variable, and 
a list of terms). A typical transform is implemented in a few hundred lines of code and 
generates a few hundred lines and code and functional correctness proofs. The 
sequence of 6 transformations automatically generates an optimized unification 
algorithm that includes a fast-fail pre-filter, along with a proof of functional equivalence 
of the optimized version with respect to the original version of the unification algorithm 
(i.e. the version without the fast-fail pre-filter optimization). 

3.11.3 Finite	Differencing	

Finite differencing, also known as incrementalization, is a well-known program 
transformation technique in which results from a previous iteration (loop or recursion) 
are cached in a way that accessing their cached values, and updating the cached 
values at each iteration, is faster than computing them from scratch. 

We implemented a general-purpose finite differencing transformation in our system, and 
we applied it to the following two procedures that are part of the Flex prover: 

1. The extraction of demodulators from the current set of clauses (this is part of 
demodulation, described earlier). 

2. The calculation of all resolvents from the cross-product of the current set of 
clauses. 

As part of this process, we also proved theorems that the finite differencing uses to 
simplify the updating expressions, e.g. distributive properties of the operators involved. 
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In the process of applying these finite differencing transformations, we found that the 
representation of clause sets as lists made it difficult to use suitable distributivity laws to 
optimize the computation (i.e. extract demodulators and calculate resolvents). Thus, we 
changed Flex to use a higher-level, more abstract representation of clause sets in terms 
of mathematical sets, using an existing library for sets. 

We also investigated the following topic. After applying finite differencing to an iterative 
computation, often the code maintains the cached information at every iteration, 
including the last iteration, which is often unnecessary. In order to eliminate this 
inefficiency at the last iteration, we developed a new transformation to restructure a 
“while-like” loop (which performs the test at the beginning of each iteration) into a “do-
while-like” loop (which performs the test at the end of each iteration). This results in a 
little code duplication, but enables finite differencing to avoid the maintenance of the 
cached information at the last iteration, resulting in time improvements. 

3.11.4 Declarative	Specification	and	Formal	Refinements	

After experimenting with optimizing and testing the executable Flex specification, we 
developed a declarative specification of Flex, with the intent that the executable one be 
a refinement of the declarative one. The declarative specification does not include 
subsumption, set of support, and similar features. Instead, it includes under-specified 
components that can be instantiated to add those features. In particular, the declarative 
specification includes an underspecified filter that allows any clause to be dropped 
(which is always sound): by suitably instantiating that filter, we can remove tautological 
clauses and/or subsumed clauses. 

We have developed and proved formal refinements from this high-level declarative 
specification of Flex to versions that incorporate domain-specific optimizations like 
subsumption, tautology removal, and set-of-support. These specifications and 
refinements form the Flex derivation tree. The executable Flex specification described 
earlier can be connected via formal refinements, to this derivation tree. 

3.11.5 Testing	

To test Flex, we drew tests from the following sources: 

• Tests that we built specifically to test certain features. 

• Arithmetic and logic puzzles taken from [Pelletier86]. 

• Tests from [AAR15]. 

• “Thousands of Problems for Theorem Provers” [TPTP], a large library of theorem 
proving problems and proofs, covering a wide range of difficulty, topics, provers, 
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and logics. It is the standard test suite used in the annual automated theorem 
prover competition at CADE. 

We drew most of the tests from TPTP. Since those tests are written in their own TPTP 
format, we developed a translator from the TPTP format to the Flex format, based on 
existing translators for other theorem provers that come with TPTP. 

 

Figure 7: TPTP testing 
 

We developed an automated test harness that runs the tests on all the executable 
versions of Flex, collecting information such as success/failure, times, number of 
clauses processed, and so on. 

As part of this test harness, we developed a graphical interface, shown in Figure 7, to 
display the Flex derivation tree and the results of running each executable version of 
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Flex on the test suite. The display is updated in real time as the tests run. The interface 
includes bar charts to compare the results of the different versions of Flex. The purpose 
of the test harness is (1) for Flex to run it autonomously to collect empirical information 
that will be used to steer the development of Flex and of its optimizations, and (2) to use 
the information collected by the test harness to generate readable tables/reports. 
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4 RESULTS AND DISCUSSION 
 
 
Figure 8 shows a roadmap of the derivations we performed in this project, with 
completed derivations shown in red boxes.   Each derivation starts from a common 
specification of the Collector.   The Reference Count collectors are mainly derived via 
Observer Maintenance.   The Copying, Generational, and Marking Collectors all stem 
from a fixpoint algorithm for tracing live nodes, but differ in their memory model and 
many other details.   In the following sections, we give more detail of each derivation. 
 

 
Figure 8: Derivational Family Tree of Collectors 

 

4.1 Generating a Concurrent Mark&Sweep Collector 
 
Figure 9 is a summary of the sequence of transformations in the derivation. The 
Mark&Sweep derivation starts with the application of the fixpoint iteration algorithm 
theory to generate high-level algorithm for tracing the live nodes.   Since the algorithm 
theory introduces the Workset observer, it naturally follows to apply Observer 
Maintenance on WS.    At this point the Graph cotype has been renamed to Heap and 
then to Memory.   The next eleven steps are optimization transformations that refine 
abstract observers, simplify expressions, and introduce new observers to speed up 
computation (e.g. rootCount which maintains a count of the number of current roots). 
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Figure 9: Derivation Structure for a Mark&Sweep Algorithm 
 
At that point, the abstract observers are sufficiently refined that we can gather them and 
define the Memory cotype via finalizeCotype, which also synthesizes definitions for any 
transformers that were specified by undefined.   The type isomorphism transformation is 
used to package three observers into one:  black (marking bit), payload (data), and 
tgtIM (outgoing arcs) become fields of a heap cell.   An alternate way to organize 
memory is to have a separate marking array and package payload and tgtIM – this 
would be accomplished via a different application of the type isomorphism 
transformation.   The derivation then performs three datatype refinement steps using 
library refinements to implement Maps, Stacks, and Sets.   Finally, the Globalization 
transformation (1) introduces a global variable for Memory that comprises the entire 
address space, (2) implements the single-threaded transformers via side-effecting 
operations on the global Memory, and (3) introduces mutexes for the bodies of atomic 
transformers in the case of a concurrent collector.   Lastly, the code is turned over to a 
conventional compiler to produce the binary. 
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The derivation in Figure 9 was the result of extended exploration – we have recorded 
some 25 folders containing variants of the domain theory and derivation for 
Mark&Sweep alone.   We list a few of the issues that motivated the search: 
 

1. Formulating the domain theory and problem specification.   For example, we 
spent several versions exploring the use of sets versus bags, collections (a 
weaker version of sets) , or Lists to model arcs.  Various problems of refinement 
motivated alternative formulations, until we discovered the Observer Refinement 
transformation, which allowed us to cleanly use sets (the most natural 
formulation). 

 
2. How to handle references – after many alternatives, we settled on unique 

Identifiers as the correct abstraction rather than addresses (which is just one 
implementation of an identifier) or polymorphic pointer types. 

 
3. Formulating the Fixpoint Algorithm Theory – We developed many variants, 

including functional, state-based, and concurrent versions. 
 

4. Organizing Derivations – The GC derivations are complex enough that we 
needed to develop techniques for organizing and managing them.   For example, 
we used a spreadsheet to track the status of observers: introduced, defined, 
maintained, ghost, or refined.  At each refinement level, this helped to track 
which observer postconditions needed to be added when a transformer is 
introduced.  For another example, we learned to factor refinements into 
definitional extensions to aid in composition during refinement.   We also 
developed a version control strategy of creating new folders for all derivation 
information when starting a new approach (hence the 25 versions mentioned for 
Mark&Sweep). 

 
5. Performance Issues – Performance profiling motivated many reformulations and 

transformations.   A simple example is the size of the supply list.  Some code 
required the size to determine if the collector was thrashing.  The Observer 
Maintenance transformation was then applied by introducing a new observer, 
supplyLength, with the invariant 
      supplyLength st = length (supply st) 
where st is the state.   An open issue in program synthesis is how, in general, to 
guide the derivation process to achieve performance (or other nonfunctional) 
goals. 
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One other performance improvement required deeper insight and changes.  As noted in 
an earlier status report, one general lesson about coalgebraic specification and 
refinement is the need to distinguish identity and value of the elements of a coalgebraic 
type (e.g. the state).   This is not a distinction that arises by refinement, but must appear 
in formalizing the application domain specification.   For heap nodes, this means that we 
specify their identity (which typically refines to addresses) and a means for accessing 
their current value via their identity.   In the past month we realized that this distinction 
must also apply to the arcs/pointers as well.  At the outset of this project, our concept 
was that the heap was specified as a graph where we have a basic observation of the 
set of arcs coming out of a node.  However, the set structure doesn’t allow the arcs to 
acquire identities by refinement.  The specification must start with the arcs having an 
identity (which refines to address and offset), together with identity-based access.  The 
set of arcs that go out of a node can be then be computed as an abstraction.   This 
required a more extensive change to the specification and the derivation structure, but 
allowed much better generated code.  It flies in the face of the heuristic to state the 
initial requirements and domain model in as abstract terms as possible, but we are 
learning that the identity/value distinction is fundamental for cotypes. 
 

4.2 Generating a Copying Collector 
 
We also developed a derivation of a Cheney-style copying collector.  The overall plan 
was to modify the Mark&Sweep derivation, since both algorithm families are based on 
an iteration to find the live nodes.  Several high-level insights emerged from studying 
the algorithm and the concepts necessary to specify and derive it.   

1. Copying requires a somewhat more general structure than M&S, which is only 
concerned with finding live (versus dead) nodes, whereas a copying collector has 
to find and copy arcs/pointers too.  We generalized the fixpoint iteration algorithm 
to find that reachable graph rather than just the reachable nodes. 

2. In exploring the coalgebraic style of specification and refinement, it has become 
increasingly clear that early on in the specification/derivation process, one must 
specify the distinction between identifiers and their state-based values.  The 
identifiers may be names, addresses, indices, etc. with the main requirement 
being that they uniquely identify some varying quantity.  In normal usage, the 
identifier remains constant and its value may fluctuate with changing state.   
However, in the case of a copying collector, the converse holds:  the identifier is 
changed and the value remains constant!   Underlying a copying collector is a 
fundamental algorithm for translating identifiers for a collection of values.    This 
algorithm will be based on a building a translation table which is a bijection 
between old and new identifiers.  In copying collectors, the translation table is 
typically implemented by forwarding pointers.  A particular challenge is building a 
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concurrent version where the identifiers are being simultaneously used by the 
Mutator and changed by the Collector. The problems of compaction, 
defragmentation, virtual memory, and network address translation require similar 
treatment. 

3. The safety requirement of a Collector is that its actions should not affect the 
Mutator’s data.  Mark&Sweep algorithms achieve this by leaving the graph of live 
nodes unchanged.  However, a copying collector works by changing the 
identifier/address of live nodes, so it is, in a sense, changing the Mutator’s data.   
A weaker characterization of the safety requirement is needed:  the collector 
preserves the topology of the heap rather than its exact structure.  The heap after 
collection is isomorphic to the heap before collection.  The isomorphism 
between the before- and after- heaps is exactly the translation table that is built 
up during copying. 
 

We realized that the crucial invariant of a copying collector is not a state invariant, but a 
transition invariant, which is a property over a pair of states and which is required to 
hold over all state transitions of a program.  The transition invariant for a copying 
collector is that the graph of live nodes must remain isomorphic under every transition 
effected by the collector.  Note that this is not exactly a conditional invariant, rather is a 
high-level requirement of any garbage collector.  Our previous specification of the 
requirements on a mark-and-sweep collector had that the graph of live nodes is simply 
preserved by the collector, which is the special case that the isomorphism is simple 
equality versus graph isomorphism.   The innovative idea we are pursuing is that we 
can synthesize the core algorithmic parts of a copying collector by means of enforcing 
the isomorphism as a transition invariant.  The driver for the maintenance is the change 
of identifier (i.e. logical address) that lies at the heart of copying (also for compaction 
algorithms). 

 
We modified our derivation script for a Mark&Sweep collector to generate a Cheney-
style Copying collector.   At the algorithmic level, the guiding concept is that a copying 
collector is a different interpretation of the same abstract design – a fixpoint iteration 
controlled by a workset.   After that, the enforcement that all collector actions maintain 
isomorphism of the live heap produces key copying actions.   After that, there is a 
similar sequence of optimizing transformations and data structure implementation 
refinements. 
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Figure 10:  Comparison of M&S and Copying Derivations 

 
A side-by-side comparison of the Mark&Sweep derivation structure with the Copying 
Collector derivation is shown in Figure 10.   Both are comprised of ~25-30 
transformations.   Of those about half (15) were copied over unchanged to the new 
derivation: of the 25 steps of the copying collector derivation, 1 was new, 3 were 
deleted, 15 were used unchanged, and 6  transformation steps were modified to obtain 
a copying collector.   This level of reuse was a little surprising, but it is an expected 
benefit of a refinement approach that is based on highly reusable transformations. 
 

4.3 Generating a Generational Collector 

We generated a simple generational garbage collector by modifying our previous 
derivation of a Cheney-style copying collector, since a generational collector can be 
seen as a one-way copying process – rather than alternating between To-space and 
From-space, a generational collector copies from new space to old space.   The 
technical challenge was to derive the key parts of a generational collector as a result of 
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enforcing the invariant that the heap space remains invariant under Collector and 
Mutator operations.  We achieved over a 60% reuse of derivation structure between the 
Copying and the Generational collectors, enabling a significant productivity increase.    
 

 
Figure 11: Comparison of Copying and Generational Derivations 

  

4.4 Generating a Reference Count Collector 
 
The reference count on a node n is the number of pointers to n from live nodes.  The 
key idea underlying the derivation of a reference count collector is to maintain the 
reference-count of a node via Observer Maintenance; i.e. to generate code to maintain 
the reference count from an invariant.   Whenever a pointer is created or changed, the 
maintenance code updates the reference count simultaneously.   It emerged during this 
derivation that the supply of free nodes could also be maintained via an invariant – the 
supply is the list of nodes that have reference count of zero.  Incremental maintenance 
will add a node to the supply whenever its reference count is decremented to zero.   In 
this way the “algorithm” of reference count collection emerges from the application of 

0GDLDV�0MNVHLF�0M--DB4MO�
0&�����.-FMOH4G.�1DPHFL,�(H8NMHL4�H4DO#4HML�
0'������H.N-H(HB#4HML�
��&����APDOSDO��#HL4DL#LBD,�"��
5�&�����#HL4#HL�5PM.MONGHP.,�FO#NG5PM�
�������APDOSDO��D(HLD.DL4�M(�N#V-M#C�
��&����APDOSDO��D(HLD.DL4,�4F4�
��'���APDOSDO��D(HLD.DL4,�MR4�MCDP�
�
�������APDOSDO��D(HLD.DL4,�OMM4P�
��'���APDOSDO��#HL4DL#LBD,�OMM40MRL4�
������APDOSDO��D(HLD.DL4,�LMCDP���
�R4&��5.NMO4�O#LCM.�.R4#4MO�
�R4'���H.N-H(V�
������APDOSDO��D(HLD.DL4,�PRNN-V��
��+����APDOSDO��D(HLD.DL4,�"�→"�4#BI�
0M4&���2HL#-HWD0M VND��D.MOV�
5PM&��� VND�5PM.MONGHP.,��D.MOV�
1 �&��1#4# VND��D(HLD.DL4,��#NP�
1 �'��1#4# VND��D(HLD.DL4,��4#BIP�
1 ����1#4# VND��D(HLD.DL4,��D4P�
3&�������3-MA#-HWD��D.MOV�
1����������H.N-H(HB#4HMLP�
0FDL���0MCD�3DLDO#4HML�

RLBG#LFDC��.MCH(HDC��#CCDC��CD-D4DC�

3DLDO#4HML#-�0M--DB4MO�S'�
0&�����.-FMOH4G.�1DPHFL,�(H8NMHL4�H4DO#4HML�
0'������H.N-H(HB#4HML�
��&����APDOSDO��#HL4DL#LBD,�"��
5�&�����#HL4#HL�5PM.MONGHP.,�FO#NG5PM�
�������APDOSDO��D(HLD.DL4�M(�N#V-M#C�
��&����APDOSDO��D(HLD.DL4,�4F4�
�
��'#���APDOSDO��D(HLD.DL4,�MR4.OBP�
�������APDOSDO��D(HLD.DL4,�OMM4P�
��'���APDOSDO��#HL4DL#LBD,�OMM40MRL4�
������APDOSDO��D(HLD.DL4,�LMCDP���
�R4&��5.NMO4�O#LCM.�.R4#4MO�
�R4'���H.N-H(V�
������APDOSDO��D(HLD.DL4,�PRNN-V�
��+����APDOSDO��D(HLD.DL4,�"�→"�4#BI�
0M4&���2HL#-HWD0M VND��D.MOV�
�
1 �&��1#4# VND��D(HLD.DL4,��#NP�
1 �'��1#4# VND��D(HLD.DL4,��4#BIP�
1 ����1#4# VND��D(HLD.DL4,��D4P�
3&�������3-MA#-HWD��D.MOV�
1����������H.N-H(HB#4HMLP�
0FDL���0MCD�3DLDO#4HML�



81  

well-known and highly reusable transformations.    A surprising insight from the 
reference count derivation is that we could go back and revise the other GC derivations 
to treat the supply observer as maintained from an invariant. 
 
The remaining steps in the derivation are mostly the same as those in the derivation of 
a Mark&Sweep collector, as shown in Figure 12.    The left column shows the steps in a 
Mark&Sweep derivation/metaprogram.  The right column shows the changes from the 
Mark&Sweep derivation to produce a Reference Count collector.   The steps in red are 
deleted, the steps in green are new, the steps in black are unchanged, and the steps in 
blue are modified from their counterparts.   
 

 
Figure 12: Comparison of M&S and Reference Count Derivations 

 

4.5 Performance Enhancements 
 
We continued our effort to eliminate the generation of garbage by the garbage collector.   
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(reported earlier) enables us to treat this problem.   In particular we studied how to 
preallocate and to reuse memory for the workset (refined to a stack), versus the easier 
approach of treating the workset as a Lisp list (with its implicit consing). 
 
A more complex example arises from the way we had been performing stateful updates 
to complex structures, such as the heap itself.  In a functional/algebraic setting, a map 
update typically generates a new map using some newly allocated memory cells and 
shared structure with the old map.  If the old map is never used, then we can reuse old 
cells rather than allocate new cells and thus avoid generating garbage.    
 
 
Part of our learning curve has been to eliminate this source of inefficiency by switching 
from algebraic/functional structures to coalgebraic/imperative structures.   We began 
extending the Globalization Transformation to generate updates to the global state that 
are maximally localized.  In Lisp parlance, we replaced setq’s by setf’s.  Extra analysis 
machinery and tables of setters and getters (updates and accessors) were needed. 

4.6 Statistics 
 
The table in Figure 13 records some of the progress made in 2012.  We selected 
representative Mark&Sweep codes generated at various time points during the year.  
Each collector was run against a random-based mutator whose input includes an upper 
bounds on the maximum number of nodes in the heap (see row 2 in the table).    
 
The runtime column gives total runtime before the system ran out of memory, including 
allocation, pointer-swinging, and collection times.  The time spent in garbage collection 
is typically on the order of 10-20%.    
 
 

 runtime gc time runtime gc time runtime gc 
time 

alloc 
n/s runtime gc 

time 
alloc 
n/s 

nodes: 1000  10000  100000   1000000   

2012           

12-Mar >600          

25-Apr 138 22         

17-May 0.031 0.005 1.6 0.5 38 10.6 29k    

18-Jun   0.73 0.007 1.38 0.16 133k    

17-Aug   0.04 0.017 1.2 0.22 162k 47.5 2.75 42k 

14-Sep   0.09 0.017 1.2 0.28 168k 61 6.6 33k 
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9-Oct     3.9 0.58 292k 99 16 114k 

9-Nov       410k   200k 
Figure 13:  Runtime Measurements 

The runtime and GC times however are not a reliable indicator because the mutator 
itself changed during the year.  The columns labeled Allocation n/s (nodes/second) 
provide better indicators of progress.  They show the rate at which nodes are allocated 
and collected, showing steady progress.  By the end of the project, the collection 
performance was up to 300k nodes/second for a 1M node memory.   There are still 
many optimizations that can be applied to further improve performance. 

4.7 Proof generation results 

We extended the following transformations to emit proofs at application time:  
Simplification, Observer Maintenance, Observer Implementation, StructureEx, 
finalizeCotype, and others.  
 

 
Figure 14:   Proof-Generation Results (part 1) 
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We made further progress on generating proofs automatically from the various 
transformation steps in our Mark&Sweep derivation.    We were able to generate proofs 
from most of the transformations used in our Mark&Sweep derivation, as shown in 
Figure 14 and Figure 15.    The left column lists the transformations of the derivation and 
the right lines lists the number of lines of Isabelle/ISAR proof script emitted by the 
transformation, providing a proof of the correctness of the generated refinement.    Most 
of the proofs are instance-level proofs, but some are a mix of library proofs (such as the 
proof of the algorithm design theory) and instance-level details.    The blue counts are a 
sum of the counts above, since the corresponding transformation has to recapitulate 
previous steps for technical reasons (which we hope to obviate).   Overall, the 
transformations automatically generate over 33,000 lines of machine-checkable proof 
script.   This is a major result of the project.  We have demonstrated that a derivational 
approach to algorithm generation can produce proofs as a by-product and that the 
marginal cost of producing those proofs is effectively zero. 
 
 
                    

 
Figure 15:  Proof Generation Results (part 2) 
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4.8 Flex Seedling 
 

The graph in Figure 16 shows the results of running successive executable versions of 
Flex over a representative set of our tests. As more optimizations are applied to Flex, 
the number of theorems proved by Flex increases, and the number of theorems not 
proved by Flex (due to reaching a timeout) decreases. 

 

 

Figure 16: Flex test cases 

 

The diagram in shows the derivation tree for Flex, rooted at the top-level declarative 
specification. 
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Figure 17: Flex Derivation tree 
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5 CONCLUSIONS 
 

5.1 Synthesizing Concurrent Garbage Collectors 
 
We conclude with some reflections on the synthesis of concurrent garbage collectors.  
Perhaps the main contribution of this work is a robust methodology and tool support for 
the automated generation of a family tree of programs that are correct-by-construction 
and have proofs automatically generated as a by-product of the refinement process.   A 
remarkable aspect of our derivation trees is that they are mainly built from highly 
reusable design theories (e.g. the fixpoint iteration theory applies to a wide range of 
problems), transformations, and library refinements.   Not only are the design theories 
and transformations applicable across domains, but they provide a compelling 
explanation of seemingly complex algorithms – Dijkstra’s on-the-fly concurrent 
Mark&Sweep algorithm was discovered after many flawed attempts [Dijkstra78], but it 
falls our naturally via fixpoint iteration and Observer Refinement.    Moreover, it has 
been our intention in designing these specifications and transformations that they 
require relatively simple calculation sequences to reach useful results.    We hope that 
the reader is convinced of this by the examples in this report, which are representative. 
 
The goal of the CRASH program has been to develop clean-slate approaches to 
enhancing security in a computer host.    We have contributed by developing techniques 
for recording our calculations and using them to generate checkable proofs of the 
correctness of our derivations.    Absence of many of the vulnerabilities that are rife in 
conventionally produced software (e.g. buffer overflows and null pointer dereferences) 
is a checkable feature of our approach.   By automating the production of proofs, we 
lower the cost of providing high levels of assurance as a normal part of software 
development.  We demonstrated that a derivational approach to algorithm generation 
can produce proofs as a by-product and that the marginal cost of producing those 
proofs is effectively zero. 
 
A crucial aspect of software engineering that is rarely addressed in formal approaches 
is the cost of code maintenance and evolution.   In our formal approach, there should be 
no maintenance in the sense of bug fixing, but there will always be a need to adapt to 
changing requirements and changing design decisions.    Somewhat to our surprise, we 
found that having an explicit executable metaprogram to generate code + proof, gave us 
an opportunity to explore code evolution at the proper level – in terms of modifying 
requirements and modifying design decisions in the metaprogram itself, rather than in 
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informal design discussions and documents.   We found that a derivation for one GC 
algorithm provided most of the design DNA needed for other GC algorithms.   In this 
case we were not modifying the problem requirements (which are common and fixed), 
but essentially making alternative design choices.   In this case the metaprogram 
modifications were done manually, but the way is open to more automated approaches. 
 

5.2 Flex Seedling 

We believe that the results of this Flex seedling show promise towards the goal of 
building a self-adaptive theorem prover. 
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7 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 

cpo   complete partial order 

CRASH   Clean-Slate Design of a Secure Host 

DARPA  Defense Advanced Research Projects Agency 

GC   Garbage Collector 

HACMS  High-Assurance Military Systems 

VDM   Vienna Development Methodology 


