
Synthesis of Concurrent Garbage Collectors

Douglas R. Smith
Stephen J. Westfold
with Cordell Green, Christoph Kreitz, Jim McDonald, Peter Pepper, Eric
Smith, Edwin Westbrook

and Alessandro Coglio, Cordell Green, Eric Smith on Flex seedling project

Kestrel Institute

15 October 2015

Contract Number: FA8750-10-C-0241
Effective Date: 23Sep10
Expiration Date: 23Sep15

Principal Investigators: Douglas R. Smith, Stephen J. Westfold

Prepared for:

Air Force Research Lab/RIOIP
26 Electronic Parkway
Rome, NY 13441-4515

 iv

Table of Contents

1 SUMMARY .. 1

2 INTRODUCTION .. 4
2.1 Motivation... 4
2.2 Objective & Hypothesis ... 4
2.3 What is program synthesis and what is our approach? ... 5
2.4 What is Garbage Collection?.. 6
2.5 Flex Seedling .. 6

2.5.1 Adaptation ... 6
2.5.2 Underlying Transformation Technology ... 7
2.5.3 Resolution Theorem Proving .. 7

3 METHODS, ASSUMPTIONS, PROCEDURES .. 8
3.1 General Approach.. 8
3.2 Specifications and Refinement .. 10
3.3 Proof-Emitting Transformations .. 11
3.4 Coalgebraic Specifications ... 12
3.5 Specification of Concurrent Garbage Collectors .. 15
3.6 Design Theories and Transformations ... 20

3.6.1 Algorithm Design Theory for Fixpoint Iteration .. 21
3.6.2 Transformations for coalgebraic specifications... 28
3.6.3 Observer and Transformer Introduction ... 28
3.6.4 Observer Maintenance .. 29
3.6.5 Observer Refinement ... 38
3.6.6 StructureEx .. 44
3.6.7 FinalizeCotype: Cotype Definition and Postcondition Synthesis ... 44
3.6.8 Globalization.. 47

3.7 Other Transformations .. 49
3.7.1 Simplification ... 49
3.7.2 Type Isomorphism ... 50
3.7.3 Partial Evaluation .. 50

3.8 Proof Emitting Transformations .. 51
3.8.1 Instrumenting transformations to record calculation chains... 52
3.8.2 Translator from Metaslang logic to Isabelle logic .. 55
3.8.3 Locales for capturing proofs of library refinements .. 58
3.8.4 Proof Script Generation ... 58

3.9 Specware Infrastructure .. 60
3.9.1 Higher-Order Matching Algorithm.. 61
3.9.2 Support for calculation .. 61
3.9.3 Tactic language .. 61
3.9.4 Transformation Support ... 62
3.9.5 Tracing support .. 63

 v

3.9.6 Specware Library ... 63
3.10 Generator of imperative code ... 64

3.10.1 Language Morphisms ... 65
3.10.2 Concurrency Support ... 67

3.11 Flex Seedling ... 68
3.11.1 Executable Prototype... 68
3.11.2 Pre-Filter Optimization .. 69
3.11.3 Finite Differencing ... 70
3.11.4 Declarative Specification and Formal Refinements ... 71
3.11.5 Testing ... 71

4 RESULTS AND DISCUSSION ... 74
4.1 Generating a Concurrent Mark&Sweep Collector .. 74
4.2 Generating a Copying Collector ... 77
4.3 Generating a Generational Collector ... 79
4.4 Generating a Reference Count Collector.. 80
4.5 Performance Enhancements .. 81
4.6 Statistics .. 82
4.7 Proof generation results .. 83
4.8 Flex Seedling .. 85

5 CONCLUSIONS .. 87
5.1 Synthesizing Concurrent Garbage Collectors ... 87
5.2 Flex Seedling .. 88

6 References ... 88

7 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 91

 vi

Table of Figures

FIGURE 1: FORM OF A METAPROGRAM ... 8
FIGURE 2: EXECUTING A METAPROGRAM TO GENERATE CODE AND PROOFS .. 9
FIGURE 3: ASSUME-GUARANTEE SPECIFICATION COMPOSITION..17
FIGURE 4: SIMULATION OF MUTATOR BY COLLECTOR+MUTATOR ...20
FIGURE 5: KLEENE FIXPOINT ALGORITHM ..23
FIGURE 6: PROOF-EMITTING TRANSFORMATION..52
FIGURE 7: TPTP TESTING ..72
FIGURE 8: DERIVATIONAL FAMILY TREE OF COLLECTORS ..74
FIGURE 9: DERIVATION STRUCTURE FOR A MARK&SWEEP ALGORITHM ..75
FIGURE 10: COMPARISON OF M&S AND COPYING DERIVATIONS ..79
FIGURE 11: COMPARISON OF COPYING AND GENERATIONAL DERIVATIONS ..80
FIGURE 12: COMPARISON OF M&S AND REFERENCE COUNT DERIVATIONS ...81
FIGURE 13: RUNTIME MEASUREMENTS ..83
FIGURE 14: PROOF-GENERATION RESULTS (PART 1) ...83
FIGURE 15: PROOF GENERATION RESULTS (PART 2) ..84
FIGURE 16: FLEX TEST CASES ..85
FIGURE 17: FLEX DERIVATION TREE ..86

 1

1 SUMMARY

There were two efforts funded under this contract. The main effort, called CGC herein,
focused on the automated generation of secure and correct-by-construction concurrent
garbage collectors, and was funded the DARPA I20 CRASH program. A related
seedling effort, called Flex herein, focused on the notion of a self-improving theorem-
prover.

Kernel functions in a system have a privileged position and can be a source of security
vulnerabilities. The challenge of this project was to take a clean-slate design approach
to explore ways to produce kernel functions together with proofs of their safety and
security. Our focus was on garbage collection algorithms that work both sequentially
(stop-the-world collectors) as well as concurrently with an application. Our approach is
based on formal specifications of safety and security properties, automated refinement
to transform high-level specifications down to code, and the emission of proofs during
the development process. The technologies that we developed are applicable to broad
range of problems, and they are being applied and further developed in DARPA
HACMS and other programs.

We briefly list the highlights of the research and development performed under this
contract.

(1) Mixed Logical/Algebraic/Coalgebraic Specifications — Specware naturally supports

the introduction of underspecified types and functions, which is necessary for an
automated refinement approach. We found a natural way to specify coinductive
types and their operators and to refine them to imperative code. Support for both
inductive and coinductive types has enabled a far more flexible specification and
refinement language, and has supported the generation of true system code.

(2) New Transformations — We developed, implemented, and extensively used a suite

of new transformations that generate correct-by-construction refinements.

• Observer Maintenance — This transformation takes an observer and an
invariant that characterizes its meaning. It calculates updates codes for each
transformer that serve to enforce the invariant.

• Observer Refinement — This transformation takes an observer whose

observation type is abstract and provides a more concrete implementation of
the type.

 2

• finalizeCoinductiveType — This transformation and its dual
(finalizeInductiveType) allow us to incrementally add observers (resp.
constructors) to a type. This supports a refinement process where we
incrementally add constraints to types and their operators. The
transformation generates a definition for the type and gives definitions for
functions that are constrained by coinductive (resp. inductive) axioms.

• Globalize — The coalgebraic style of specification uses linear, or single-

threaded, functions to express the dynamics of a state-changing dynamical
system (such as a concurrent GC). The state of the computation is both an
input parameter and a single output parameter. The single-threadedness
allows this transformation to suppress the state parameter and treat it instead
as a global variable. From purely functional specifications, we are then able
to generate idiomatic imperative code.

(3) Proof Emission from Transformations — We pioneered techniques for extending our

transformations so that they not only generate more concrete specifications, but they
simultaneously output a checkable proof that the refinement is correct. Generating
proof scripts as a by-product of each refinement step is only possible because our
transformations operate by performing explicit calculations in the domain theory (i.e.
using domain axioms and theorems). We generate proof scripts expressed in the
Isar sublanguage of Isabelle, which can be checked automatically. For our
Mark&Sweep collectors we automatically generated over 33,000 lines of proof text,
which was then proof-checked by Isabelle.

(4) Derivations of Garbage Collectors — We developed metaprograms that

automatically generate a family tree of the most common classes of garbage
collectors from a common specification. For experimental purposes, we wrote a
program that randomly generates garbage.

• Mark and Sweep concurrent collectors — We generated a series of
increasingly efficient versions of Mark&Sweep collectors, both state-the-world
sequential collectors and concurrent collectors.

• Copying Collectors — We generated a version of the Cheney Copying

Collector. A key technical innovation was recognizing that the key safety
property — the collector must ensure that the live graph remains isomorphic
under its actions — provides a key driver of the derivation process. The
necessity to enforce isomorphism of the heap allows us to calculate the
copying steps of the Cheney Algorithm. In other words, we can replace
invention by calculation.

 3

• Generational Collectors — We generated a generational collector by means

of a relatively easy modification to the metaprogram for generating a Cheney
Copying collector.

• Reference Counting — We generated a series of reference count collectors,

where the key insight was to maintain the reference count as an invariant.
This allowed the Observer Maintenance transformation to do most of the work
of calculating updates to the reference count for each node and to trigger
recycling of dead nodes.

(5) Generator of Imperative & Concurrent Code — We extended our code generators to

allow the coalgebraic specifications to be translated to idiomatic state-changing
CommonLisp code. Efforts to generate idiomatic C code were underway as the
project concluded.

(6) Demonstrated Software Evolution via Metaprogram Evolution — One of the

surprising results of this project was the degree of commonality between the
metaprograms for the different collector algorithms listed above. When starting a
derivation for a new class of collectors (essentially in the order listed above), we
started with the derivation metaprogram and modified it, rather than starting from
scratch for each. We found that over 65% of the metaprogram text survived
verbatim.

Flex Seedling

We have investigated the idea of building Flex, a self-improving theorem prover. The
vision is that of an automated theorem prover that can apply transformations
(optimizations) to itself, timing itself on a test suite and attempting to find sequences of
transformations that improve its performance. Flex adds automation and self-adaptation
to the automated refinement technology used in the garbage collection synthesis effort.

We have built a prototype automated theorem prover and demonstrated how various
transformations lead to performance improvements. We have built prototype
functionality to automatically generate a potentially large number of transformed
versions of the prover and to run a set of tests on it. While much remains to be done to
fulfill the Flex vision, the results we obtained under this seedling are promising.

 4

2 INTRODUCTION

2.1 Motivation

The DARPA CRASH program sought to develop a clean-slate approach to producing
secure host computers, loosely following a biologically-inspired approach. It addressed
the broad question: If we could design a host computer with security as a key
requirement, including all of its hardware and software layers, how would we proceed?

Kestrel proposed to focus on the correct-by-construction generation of a key component
of the language runtime of many systems: its runtime memory management or garbage
collection algorithms. These algorithms usually run in the OS kernel and have
privileged access to data. They have been exploited to leak sensitive information
(violate implicit confidentiality requirements), and can potentially be used to breach
integrity and availability requirements.

A key part of our effort was (1) to generate safe, secure, and performant collectors, and
(2) to generate proofs as a by-product of the synthesis process, so that certifying
authorities could independently and efficiently check that the collectors satisfy their
safety and security properties. In effect we aimed to generate proof-carrying programs.

Taking a larger view, the correct-by-construction generation of garbage collectors can
be seen as an instance of (paves the way toward) the ability to generate critical
software components in the software stack, together with certification evidence. The
technology is applicable to a broad range of problems, and its being applied and further
developed in DARPA HACMS and other programs.

2.2 Objective & Hypothesis

A long-term goal has been to demonstrate that the automated generation and evolution
of software from requirements-level specifications provides a cost-effective alternative
(or supplement to) current methodologies for software development. Benefits of the
approach include correctness-by-construction, generation of certification evidence in the
form of proofs, good performance, and productivity gains through automation. Our
specific objective in this project has been to demonstrate the feasibility of automating
the generation of a family of concurrent garbage collectors. In Section 4 we discuss the
extent to which our results advance our long-term goal and demonstrate the claimed
benefits.

 5

2.3 What is program synthesis and what is our approach?

Generally, program synthesis is the automated construction of programs from
specifications of their intended behavior. Our approach is deductive and starts with
the capture of program/system requirements in terms of formal specifications. The full
power of higher-order classical logic, as supported in Kestrel’s Specware system
[SW03], is used to express specifications as first-class entities along with operations for
structuring, composing and refining them.

A major distinguishing feature of our refinement approach is that we can calculate each
of the refinement steps automatically. Other approaches to refinement (e.g. VDM, B,
Praxis) rely on the post-hoc verification of manually created refinement steps. This is
an expensive process, and it proves difficult to maintain the refinement chain under
changes in requirements. While there is a significant upfront investment in building up a
domain-specific specification for garbage collection (or other domains), the payoff
comes downstream with the automated generation of families of codes together with
their proofs. The amortized cost over the product family and over its lifecycle should be
dramatically lower than for other approaches to software production.

The synthesis approach that we developed in this project requires user input in two
parts: (1) formal requirements specification, and (2) a metaprogram.

The development of correct-by-construction code via a formal refinement process
has the following form:

Spec0 ⟸ Spec1 ⟸ … Specn ⟸ Code.

The refinement process starts with a specification Spec0 of the requirements on a
desired software artifact. Each Speci , for i=0,1,...,n represents a structured
specification and the arrows ⟸ are refinements. The refinement from Speci to Speci+1
embodies a design decision which narrows down the number of possible
implementations. The final step translates the lowest-level specification Specn to code
in a suitable programming language. Semantically the effect is to narrow down the set
of possible implementations of Specn to just one, so specification refinement can be
viewed as a constructive process for proving the existence of an implementation of
specification Spec0; i.e. its consistency.

 6

2.4 What is Garbage Collection?

Many modern programming languages provide support for dynamically allocated
memory. In contrast to local variables in a function which can be stack allocated since
their lifetime is know statically to end when the function returns, dynamic memory is
allocated from the heap since its lifetime is not, in general, knowable at compile-time.
This entails the need for a runtime component that tracks objects on the heap to decide
when they are no longer needed and their memory can be recycled for other purposes.
This process is called garbage collection and the component is called a garbage
collector, or simply a collector.

To work properly, a collector must have access to any part of a computer that can hold
references (pointers) to the heap, including registers, runtime stacks, and the heap
itself. This privileged access makes it a potential source of security vulnerabilities,
since an attacker that gains control of a collector could access sensitive information,
corrupt the state of an application, or tie up space and time resources to degrade the
services that depend on the collector.

Similar concerns can be stated many components of the operating system kernel. By
focusing on the generation of secure and correct-by-construction garbage collectors,
this project aimed to demonstrate a cost-effective way to produce high assurance
components in general.

2.5 Flex Seedling
2.5.1 Adaptation	

A software system can be more resilient and performant if it can automatically adapt its
own behavior to changing external conditions. The adaptation should take place
dynamically, while the system is running, as soon as the environmental changes are
detected.

Currently, automatic dynamic adaptation is typically limited to a few pre-programmed
parameters that can change in response to external stimuli. A major motivation behind
Flex is to go significantly beyond that. We envision software that can change its own
code by applying transformations to itself, where the new code is optimized to the new
environmental conditions.

Scalable: Proofs increase scalability. We assume bugs and their effects are major
limiting factors in the scalability of applications. So reducing errors and their effects, via
proofs, allows growth to larger scale.

Safe Emergent Behavior: Because we have proofs that constrain/limit the behavior of
the software, we can safely let the system evolve, with little risk of undesired emergent

 7

behavior. Of course, proofs help avoid not only “emergent” but also many kinds of
undesired behavior.

2.5.2 Underlying	Transformation	Technology	

Our Flex prototype is based on the same formal specification and automated refinement
technology described earlier, used for the synthesis of garbage collectors. The starting
point for adaptation is a full derivation of an implementation from a specification.
Adaptation is achieved, in the Flex vision, by automatically modifying the derivation
based on the environmental changes to adapt the system to, and by re-generating a
new implementation that is optimized to the new situation.

In order to have tighter integration between derivations and proofs, we carried out most
of our Flex development in a Specware-like extension of the industrial-strength ACL2
theorem prover [ACL2]. The Specware-like extensions was developed under a separate
effort: it features specifications and morphisms as described earlier, as well as a
collection of automated proof-emitting transformations.

2.5.3 Resolution	Theorem	Proving	

Flex is a theorem prover based on resolution [Robinson65], a proof procedure that
underlies some of the world’s best theorem provers. The use of a resolution theorem
prover for program synthesis was pioneered in [Green69].

A resolution theorem prover works by refutation: to prove that a conclusion C follows
from a set of hypotheses H, the theorem prover attempts to derive a contradiction from
H and the negation of C. Both H and the negation of C are supplied in conjunctive
normal form, i.e. as a conjunction of clauses, where a clause is a disjunction of literals,
where a literal is either an atomic formula or the negation of one. For more information
on resolution and related theorem proving techniques discussed in this report, see
[Wos00].

3 METHODS, ASSUMPTIONS, PROCEDURES

Our objective was to demonstrate the feasibility of automating the generation of a family
of concurrent garbage collectors from requirement-level specifications, together with
correctness proofs. The overall approach is characterized by formal specifications,
formal refinements, transformations to generate refinements, proof-emitting
transformations, and metaprograms. A key assumption is that it will ultimately become
practical for system developers to capture their requirements as formal specifications,
and that the process of transforming those specifications to proof-carrying code can be
largely automated (with some guidance).

3.1 General Approach

The synthesis approach that we developed in this project requires two forms
of user input: (1) formal requirements specification, and (2) a metaprogram.

Figure 1: Form of a Metaprogram
Figure 1 shows a metaprogram as a sequence of transformations. The metaprogram is a
sequence of transformations to be applied to the requirement specification. The
transformations are typically drawn from Specware's library. In a later section, we
present a collection of new transformations that were developed as part of this project.
The actual syntax/representation includes parameters to the transformations as well any
theorems that should be applied.

metaprogram =
transformation1 ;
transformation2 ;
transformation3 ;
…

9

Figure 2: Executing a Metaprogram to generate code and proofs
Specware executes a metaprogram automatically. The effect, illustrated in Figure 2, is to
sequentially transform the requirement specification into more refined specifications.
Each transformation embodies some design knowledge, so the effect of applying a
transformation is to generate (1) a refinement of the input specification into a refined
specification that incorporates an instance of the transformation's design knowledge,
and (2) a machine-checkable proof that the output specification is a refinement of the
input specification. The metaprogram is then an explicit and formal statement of the
design content of the generated code.

We would like to emphasize the consequences of this approach with respect to software
evolution. Studies of evolution suggest that most changes to systems fall into a small
number of categories, mainly bug-fixes, additionally requirements, performance tuning,
and migration. First, bug fixes are not relevant here since the code is generated with

requirement
specification0

transformation1

specification1

proof of correct
refinement

spec0 � spec1

transformation2

proof of correct
refinement

 spec1 � spec2

specification2

transformation3

proof of correct
refinement

 spec2 � spec3

specification3

…
code

10

proofs of correctness (although bug fixes to the requirement specification will commonly
arise). Second, the addition of requirements is facilitated in our approach because we
have a formal specification of requirements. It is much easier to add requirements to a
specification than to add them at the code level. Third, performance tuning also has an
explicit locus in our approach, since it is manifest by extending or modifying the
metaprogram — either adding new transformations, or modifying how existing
transformations are applied (e.g. by adding theorems that the transformation can use).
Finally, migration is often a matter of adapting the metaprogram to suit a new target
language or platform. Typically most of the metaprogram is preserved under migration
with just some of the backend transformations needing to be changed. In summary, our
approach, based on formal specification of requirements and the derivation structure via
a metaprogram, provides good locality for the kinds of changes that arise in software
evolution. This fact underlies our claim that this approach is essential to the future of
Software Engineering.

3.2 Specifications and Refinement

A specification defines a language and constrains its possible meanings via axioms. A
specification is given by a finite collection of type symbols (optionally including a
definition), function symbols and their signature (optionally including a definition), and
axioms over the type and function symbols. We treat predicates as Boolean-valued
functions. For purposes of this paper, we focus on first-order specifications (i.e.
functions do not take functions as arguments), although Specware allows higher-order
specifications. The deductive closure of the axioms is a theory, so a specification is a
finite presentation of a theory.

A refinement can be expressed formally via a specification morphism which translates
the language of one specification into the language of another specification in a way
that preserves theorems. Formally, a signature morphism from specification S0 to
specification S1 is a type-consistent map from the vocabulary of S0 (i.e. its type and
function symbols) to the vocabulary of S1. A specification morphism from S0 to S1 is a
signature morphism that preserves theorems; i.e. that translates each theorem of S0 to
a theorem of S1. To establish a specification morphism, it is sufficient to prove that
each axiom of S0 translates to a theorem of S1. Let Morphism denote the type of
specification morphisms (or simply morphisms).

Specification S1 is an extension of specification S0 if there is an specification morphism
S0 → S1 whose underlying signature morphism is injective. We use importation to
express extension, allowing the construction of complex specifications. More generally,
specifications and their morphisms constitute a co-complete category, where the colimit
operation provides a general means for constructing complex specifications. Intuitively,

11

the colimit is the simplest specification that combines given specifications C modulo
their common structure.

As models of specification S, we admit any structure of sets and functions that interprets
at least of each type and function symbol in S and that satisfies the function signatures
and the axioms. This semantics allows structures for extensions of S to be models of S.
The denotation of a specification morphism m is a map from models of the codomain of
m into models of the domain — every model of S1 is mapped to a model of S0.

3.3 Proof-Emitting Transformations

Specification S0 refines to S1 if there is a specification morphism m:S0 → S1. We refer
to m as a refinement and a morphism, and in context, S1 as the refinement of S0. In
this paper we are interested in rules and techniques for automatically generating
refinements. A specification transformation or simply a transformation, is a partial
function on specifications that generates a refinement: t:Spec → Morphism. That is, if
t(S) = m, then m:S→ codomain(m) is a refinement of S.

As discussed in the next section, we developed a set of new transformations that
support a coalgebraic style of specification, leading towards the generation of
imperative and concurrent code. Most of our transformations work by applying a
sequence of equations (via rewrite rule) to parts of the given specification. The chain
of equations that are applied proves the correctness of the resulting refinement. We
developed techniques for saving the equation chain and emitting it as a proof structure
that can be checked by an external proof checker. In our case, the proofs are
expressed in the Isar format of the Isabelle proof assistant. Isabelle is used to
automatically check that the emitted Isar proofs are in fact proofs of the refinement proof
obligations generated by Specware.

The upshot of using proof-emitting transformations is to co-generate both code and
proof that the code satisfies its specification. This is in contrast to post-hoc verification
approaches that seek to prove a program correct after it has been written. Generating
proof-carrying code has the advantage that all design information is available to the
proof generation process as the code is being constructed. We believe that this is a
more economical approach to producing certifiably correct software.

12

3.4 Coalgebraic Specifications

Coalgebra is a relatively recent area of mathematical study, which, in a sense, is dual to
algebra. It has been attractive as a way to model and reason about infinite and non-
well-founded objects, such as streams and the behaviors of state machines
[Rutten00,Jacobs97]. It has been a natural unifying foundation for exploring dynamical
systems, including both discrete and hybrid automata. Coalgebra also provides a
natural way to model classes in an Object-Oriented sense and subclass hierarchies.

For our purposes, algebra, via inductive types, provides a foundation for specifying and
refining finite data, such as Booleans, Natural numbers, Lists, and finite Sets.
Coalgebra, via coinductive types (aka cotypes), provides a natural foundation for
specifying and refining stateful and concurrent computation. It has also proved useful
for giving a foundation to object-oriented languages and class hierarchies [Jacobs97].

One of our new approaches in CRASH was to use a mixture of algebraic and
coalgebraic types in our specifications, and to develop new transformations to handle
the cotypes.

There is a descriptive vocabulary that goes with cotypes. Algebraic types are
characterized by their constructors, which are used inductively to build up terms for all
values in the type. The inductive construction allows inductive definitions of functions
and proof by induction. In contrast, cotypes are characterized by their destructors,
which are operations on the cotype that decompose a cotype element into its parts.
Typically destructors are categorized as observers (which observe an aspect of an
element) or transformers (which transform an element into another element of the
cotype). The iterated destruction of objects of the type give rise to coinductive
definition of functions and proofs by coinduction.

Here is a generic specification that illustrates the coalgebraic style that we developed in
this project:

S = spec
 cotype State
 op obsA:State-> A
 op obsB:State-> B
 op obsC(st:State):C = h(obsA st, obsB st)
 op f(st:State)(arg:Arg):
 {st':State| obsA st' = alpha obsA st
 & obsB st' = beta obsB st}
 op g(st:State)(arg:Arg):
 {st':State,d:D| obsA st' = gamma (obsA st) arg

13

 & obsB st' = delta (obsB st) arg
 & d = eps (obsA st) (obsB st) arg}
end spec

Spec S has two basic (undefined) observers (obsA and obsB), a defined observer
(obsC), and two transformers/destructors (f and g). The latter are specified by giving
coinductive constraints (postconditions) stated as the predicates of a dependent output
type. That is, the output type of f is the set of all States st’ such that the obsA
observation is given by (alpha (obsA st)); i.e. by some function of the old obsA
observation. This is a dependent type because it depends on the value of st that is
bound when the transformer is called. The types A, B, and C may be algebraic (i.e.
constructor-based). The Greek-letter functions (alpha, ...) capture the effect of the
transformer on their particular observer.

Here is a simple specification of mutable graphs using this style:

Graph = spec
 cotype Graph
 op nodes : Graph -> Set Node
 op sucs : Graph -> Node -> Bag Node
 op addArc (G:Graph)(x:Node,y:Node):
 {G':Graph | nodes G' = nodes G
 & sucs G' x = insert(y, (sucs G x))}
 end-spec

Spec Graph introduces an undefined cotype Graph that has two observers, nodes and
sucs, and one transformer addArc. All that we know about a Graph is what we can
observe, which is its current set of nodes and the successors of any given node. The
addArc transformer allows us to change a Graph by adding a new arc from node x to
node y. The style of specifying the addArc operation is via predicates expressed in
coinductive form: the result of adding an arc is completely specified in terms of what
observations we can make of the new Graph.

Here is a more elaborated specification of mutable graphs that is closer to the form that
we ultimately settled on in the GC derivations.

Graph = spec
 cotype Graph
 type NodeId % identifiers of Nodes
 type Index
 op roots: Graph -> Set NodeId
 op allindicies: Graph -> NodeId -> Set(Index)

14

 type Arc = Map(Index, NodeId)
 op src(G:Graph)(n:NodeId)
 op tgt (G:Graph) (a:Arc):NodeId
 op nodes : Graph -> Set NodeId
 op outNodes : Graph -> NodeId -> Set NodeId
 op setTgt (G:Graph)(a:Arc)(y:Node): % swing the arc a to point to y
 {G':Graph | nodes G' = nodes G
 & roots G’ = roots G

 & tgt G' a = y }
end-spec

A stateful setting allows values of ``variables'' to vary with changing state. In coalgebraic
terms, observations of state will vary over time. This gives rise to the key distinction
between identity and value: over time the identity of an observation remains stable (is
preserved) while its value may vary. This phenomenon is pervasive in everyday life as
well as in formal contexts; e.g. citizens have a unique identifier for government
purposes (e.g. their SSN) while the value of the citizen's age and weight, say, varies
over time. Similarly in a formal context, an IP address provides a unique identifier for
Internet purposes, but it refers to (its value may be) a constantly varying local network.

In this style of specification, it is important to begin formalization with an understanding
of what the observers are, and the distinction of identity versus value. For a single
fluent (changing value), a simply observer of state is sufficient. For a (more or less)
structured collection of values, an observer that is parametric both on state and unique
identifiers for the values is needed. That is, the observer function itself is a unique
identifier, but if there is a collection of changing values, then an identifier type Id must
be introduced and an observer that is parametric on Id is introduced to observe
individuals of the collection.

The behaviors of this system would again be all streams of Graph, induced by
newGraph and the addArc and setTgt transformers (transition functions). Other
observers and transformers will be added as needed.

For example, in a formal specification of mutable graphs, we have the nodes and arcs
as observable entities. A specification is required then to have types NodeId and ArcId,
together with observers that are parametric on those identifier types to yield the current
values of nodes and arcs.

The transformers are only known via the changes that they make to observations,
leading to a coinductive style of specification, expressed by coinductive constraints in
the postcondition of transformers.

15

3.5 Specification of Concurrent Garbage Collectors

The domain specification of a collector is built up incrementally. In the previous section
we presented a fragment of a generic specification for mutable/coinductive graphs. We
now extend Graph to Heap by adding heap concepts: nodes can be roots, and be live,
dead, supply, and active.

Heap = spec
 import translate Graph by {Graph +-> Heap}
 op roots : Heap -> Set NodeId
 op supply : Heap -> Set NodeId
 op active(H:Heap) : Set NodeId =
 lfp(roots H, fn(ns:Set NodeId)-> (allOutNodes H ns))

 op live (H:Heap): Set NodeId = active H \/ supply H
 op dead (H:Heap): Set NodeId = nodes(H) — live(H)
end-spec

Heap imports the Graph specification and, in the process, renames the cotype Graph to
Heap. It introduces new observers of the Heap: the roots, active nodes, live nodes, and
dead nodes. The live nodes are the set of nodes that can be reached from registers,
the stack, and static memory via references. We omit axioms asserting that all of these
observe subsets of the current Heap's nodes. 1

Next, we further extend the Heap specification to Collector by adding new observers
and transformers relevant to collectors.

Collector = spec
 import Heap
 op black(H:Heap): {blk:Set NodeId | blk subset (nodes H)}

 op insertBlack(H: Heap)(n:NodeId | n in? nodes H)
 : {H': Heap | black H' = set_insert(n, black H)}

 op deleteBlack(H: Heap)(n:NodeId| n in? black H && n in? nodes H)
 : {H': Heap | black H' = set_delete(n, black H)}

 refine def addSupply(H:Heap)

1 Notation: \/ is set union and — is set difference.

16

 (n:NodeId | ~(n in? black H)
 && ~(n in? supply H)
 && n in? nodes H)
 : {H': Heap | black H' = set_insert(n, black H)}

 op findLive (H:Heap | black H = supply H) : {H':Heap | live H' subset black H' }

 op sweep (H :Heap | live H subset black H):
 {H':Heap | supply H' = (nodes H — black H) \/ (supply H)
 && black H' = empty_set }

 op recycle1(H:Heap): Heap
 = (let _ = writeLine "GC invoked" in
 let H1 = findLive H in
 let H2 = sweep H1 in
 H2)

 op selectSupply(H:Heap): Heap*Option(NodeId) =
 (if supply H = empty_set
 then (let H1 = recycle1 H in
 if size (supply H1) <= thrashBound H1
 then let _ = writeLine "memory exhausted!" in
 let _ = throw_abort () in
 (H1,None)
 else selectSupply H1)
 else selectSupply1 H)

 op selectSupply1(H:Heap | ~(supply H = empty_set)):
 {(H',on):Heap*Option(NodeId) |
 ex(y:NodeId)(y in? supply H && on = Some y
 && supply H' = set_delete(y, supply H)
 && black H' = set_delete(y, black H)
 }
end-spec

Collector imports the Heap specification. It introduces a key new observer, the black
nodes which are a computable approximation to the live nodes, and two transformers
for modifying black. The color metaphor comes from Dijkstra [Dijkstra78]. findLive is
specified to make the black nodes be a superset of the live nodes. Ideally we should
establish black = live, but in a concurrent setting the best that can be done is to

17

establish black as an upper bound. This implies that the complement of the black nodes
are guaranteed to be dead nodes. recycle1 performs one iteration of finding live nodes
and then returning known dead nodes to the supply. selectSupply removes a node
from supply and returns it.

In a stop-the-world setting, where the mutator is stopped while the collector scans for
live nodes, it is relatively easy to determine the dead nodes for recycling. When the
collector is intended to run concurrently with the mutator, the situation is trickier. Figure
3 shows the structure of a rely-guarantee specification for a concurrent collector.

The collector relies on (or assumes that) its environment monotonically increases dead
nodes; technically, that every state-changing action of the Mutator satisfies the
specification

 CollectorRelyCond (st;State):{st’:State | dead st ⊆	dead st’ }

the satisfaction of which is indicated by the cross arc from the Collector’s rely condition
to the Mutator’s guarantee condition.

Figure 3: Assume-Guarantee Specification Composition

Conversely, the Mutator relies on (or assumes that) its environment preserves the live
graph (via isomorphism); technically, that every state changing action of the Collector
satisfies the specification

 MutatorRelyCond (st;State):{st’:State | live st ≅	live st’ }

the satisfaction of which is indicated by the cross arc from the Mutator’s rely condition to
the Collector’s guarantee condition. If the Collector’s rely condition is satisfied by its

Specifying a Collector

Collector

dead � dead’

dead � dead’ live � live’
� supply’ � dead

Mutator

live � live’

guarantees guarantees

relies-on relies-on

Can prove that
1.  liveness is stable under Collector operations
2.  dead nodes increase under Mutator operations

18

environment (i.e. the Mutator) then it guarantees each of its actions preserved the live
graph (isomorphically) and that the supply nodes in the end state are all dead nodes.
Conversely, if the Mutators rely condition is satisfied by its environment (i.e. the
Collector) then it guarantees each of its actions monotonically increase the dead nodes.	

The safety of the composed Mutator + Collector system can be treated more formally as
follows. We define a cotype called State that has various observers, including the
heap as a rooted graph, ghost observers for the live and dead nodes, and others.

 cotype State % The basic cotype
 type Transformer = (State -> State)
 type Observer a = (State -> a)

 op Graph % rooted directed graphs
 op heap: Observer Graph
 op live: Observer Graph % a ghost op: for spec purposes only
 op dead: Observer (Set NodeId) % a ghost op: for spec purposes only
 ...

We also define an equivalence relation on State that abstracts away State observers
owned by the Collector. Two states are equivalent if they are observationally equivalent
to the Mutator, in particular that their live graphs are isomorphic and that the Mutator
behaves equivalently in equivalent states.

 op stateEquiv infix 20: State -> State -> Bool
 axiom stateEquivalence is
 reflexive stateEquiv && transitive stateEquiv && symmetric stateEquiv

 op graphIso infix 20: Graph -> Graph -> Bool
 axiom graphIsomorphism is
 fa(G,G') (graphIso G G') =
 (ex(f:Bijection(Graph,Graph)) G = f G'

&& (inverse f) G' = G
&& a in? G = (f a) in? G’)

 axiom graphIso_in_stateEquiv is
 fa(st1:State,st2:State) st1 stateEquiv st2 => (live st1) graphIso (live st2)

It is convenient to define a type of Transformers and (polymorphic) Observers and then
define subtypes for Collector and Mutator transformers that have desired properties as

19

subtype predicates. Two key insights are (1) the states are stable under Collector
operations, and (2) mutator actions form a congruence wrt state equivalence. We
specify that any Mutator action must (1) achieve nondecreasing dead nodes, and (2) be
congruent wrt stateEquiv. We specify that any Collector action must preserve state
equivalence.

 type Mut = {m:Transformer |

fa(st:State) (dead st) subset (dead (m st))
&& fa(st:State,st':State)
 (st stateEquiv st') => ((m st) stateEquiv (m st'))}

% The state is stable under Collector actions
 type Col = {c:Transformer | fa(st:State) st stateEquiv (c st)}

 op mutator : Mut
 op collector: Col

Based on the specification above, we formulate and prove the essential safety property
of a garbage-collecting system: the composed Mutator and Collector simulate the
behavior of the Mutator alone (up to blocking, see Appendix).

Theorem (Safety): run(mutator || collector) simulates run(mutator).

Proof: The proof is by coinduction (or induction if we use a constructor for an initial
state) using the state equivalence as the (bi)simulation relation. To do so, we consider
traces of the atomic steps of the mutator and collector interleaved (see Figure 4). We
define a trace (aka trail) of a system S as a sequence of alternating states and atomic
actions of S:

<st0, a0, st1, a1, st2, a2, … sti, ai, … >

Given a mutator step m preceded and followed by zero or more collector steps, we must
show that there is a trace of the mutator alone that reflects the action of m. The key step
is illustrated in the figure below. Let S1 = run(mutator) and S2 = run(mutator||collector).
Consider (co)inductively a trace tr1 of S1 that arrives at a state st1 and a trace tr2 of S2
that arrives at an equivalent state st2. If tr2 proceeds with a mutator step m preceded
and followed by zero or more collector steps, we must show that there is a trace of S1
that reflects the action of m and results in an equivalent state.

20

Figure 4: Simulation of Mutator by Collector+Mutator

First, since st1 and st2 are equivalent and m is enabled in st2, then it is also enabled in
st1 — this requires that all observations that inform control decisions made by the
Mutator are part of the state equivalence. Consequently, there is some extension of the
trace prefix of st1 with action m. Next, we show that the resulting states are
equivalent:

where ≅ denotes isomorphism between two graphs. This means that as the composed
system S2 simulates S1, step-by-step it preserves isomorphism of the live graph.

3.6 Design Theories and Transformations

In this section, we present a series of novel transformations that generate refinements
in our GC derivations. There are three general sources of techniques for generating
refinements:

(1) Manual Extensions — manually written extension of a specification
(2) Library Refinements — are applied via a pushout (transformation that invokes

colimit computation), and
(3) Transformations — transformations that generate refinements.

As described in Section General Approach, we manually write a metaprogram, also called
a derivation script, which is an executable sequence of refinement steps applied to an

It convenient to define a type of Transformers and (polymorphic) Observers and then define sub-
types for Collector and Mutator transformers that have desired properties as subtype predicates.
Two key insights are (1) the states are stable under Collector operations, and (2) mutator actions
form a congruence wrt state equivalence.

(* Mutator actions are

(1) nondecreasing wrt dead nodes

(2) congruent wrt stateEquiv *)

type Mut = {m:Transformer |

fa(st:State) (dead st) subset (dead (m st))

&& fa(st:State,st’:State)

(st stateEquiv st’) => ((m st) stateEquiv (m st’))}

% The state is stable under Collector actions

type Col = {c:Transformer | fa(st:State) st stateEquiv (c st)}

op mutator : Mut

op collector: Col

Based on the specification above, we formulate and prove the essential safety property of a garbage-
collecting system: the composed Mutator and Collector simulate the behavior of the Mutator alone
(up to blocking, see next section).

Theorem (Safety): run(mutator∥collector) simulates run(mutator).

Proof: The proof is by coinduction1 using the state equivalence as the (bi)simulation relation. To
do so, we consider traces of the atomic steps of the mutator and collector interleaved. We define a
trace (aka trail) of a system S as a sequence of alternating states and atomic actions of S:

st0
a0 !! st1

a2 !! · · · stk
ak !! · · ·

Given a mutator step m preceded and followed by zero or more collector steps, we must show that
there is a trace of the mutator alone that reflects the action of m. The key step is illustrated
in the figure below. Let S1 = run(mutator) and S2 = run(mutator||collector). Consider
(co)inductively a trace tr1 of S1 that arrives at a state st1 and a trace tr2 of S2 that arrives at an
equivalent state st2. If tr2 proceeds with a mutator step m preceded and followed by zero or more
collector steps, we must show that there is a trace of S1 that reflects the action of m and results in
an equivalent state.

tr1 : · · · !! st1

∼=

m !! st′1

∼= ?

!!

tr2 : · · · !! st2
c1 !! m !! c2 !! st′2 !!

1or induction if we use a constructor for an initial state

2

* *

First, since st1 and st2 are equivalent and m is enabled in st2, then it is also enabled in st1 – this
requires that all observations that inform control decisions made by the Mutator are part of the
state equivalence. Consequently, there is some extension of the trace prefix of st1 with action m.
Next, we show that the resulting states are equivalent:

st2 ∼= st1 by assumption

=⇒ c1(st2) ∼= st1 by Col subtype property, transitivity

=⇒ m ◦ c1(st2) ∼= m(st1) by Mut subtype property

=⇒ c2 ◦m ◦ c1(st2) ∼= m(st1) by Col subtype property, transitivity

⇐⇒ st′2
∼= st′1 by definition

From the last step we can also infer

=⇒ live st′2 ≃ live st′1 by axiom graphIso in stateEquiv

where ≃ denotes isomorphism between two graphs. This means that as the composed system S2

simulates S1, step-by-step it preserves isomorphism of the live graph.

2 Handling Bounded Memory - a sketch

To complete the safety case, we must hande the effects of finite memory on the semantics of
this composition. Suppose that the Mutator can be run in initial states from which it consumes
an unbounded amount of dynamically-allocated memory. The Mutator, running by itself, will
eventually exhaust memory. However, when run concurrently with the Collector, then the joint
system will exhaust memory at some later point, but if the composition is safe, then the execution
traces should be essentially equivalent (bisimilar) up until the time that the first execution fails.
Let us assume that the Mutator blocks on the call to allocate new memory (which is selectSupply
in the Specware derivation). Once memory has been exhausted, then the trace terminates in a
failure state.

With these concepts in mind, we can formalize the notion of bounded safety of two systems. We
define a failure trace of a system Si as a sequence of alternating states and atomic actions of S
terminating in failure:

sti0
a0 !! sti1

a2 !! · · · stik
ak !! fail

Let n denote the size of memory. Define an information order on traces (less-defined-than-or-equal)

tr1 ⊑n tr2 ⇐⇒ ∀(j)(j ∈ [0, length(tr1)) =⇒ stj1
∼= stj2 ∧ . . . ∧ last(tr1) = fail)

We should be able to lift that order to the set of all traces and then generalize the definition
of simulate to allow the simulator to continue beyond the failure of the simulated system. Also
generalize the definition of run to executing with memory of size n.

3

First, since st1 and st2 are equivalent and m is enabled in st2, then it is also enabled in st1 – this
requires that all observations that inform control decisions made by the Mutator are part of the
state equivalence. Consequently, there is some extension of the trace prefix of st1 with action m.
Next, we show that the resulting states are equivalent:

st2 ∼= st1 by assumption

=⇒ c1(st2) ∼= st1 by Col subtype property, transitivity

=⇒ m ◦ c1(st2) ∼= m(st1) by Mut subtype property

=⇒ c2 ◦m ◦ c1(st2) ∼= m(st1) by Col subtype property, transitivity

⇐⇒ st′2
∼= st′1 by definition

From the last step we can also infer

=⇒ live st′2 ≃ live st′1 by axiom graphIso in stateEquiv

where ≃ denotes isomorphism between two graphs. This means that as the composed system S2

simulates S1, step-by-step it preserves isomorphism of the live graph.

2 Handling Bounded Memory - a sketch

To complete the safety case, we must hande the effects of finite memory on the semantics of
this composition. Suppose that the Mutator can be run in initial states from which it consumes
an unbounded amount of dynamically-allocated memory. The Mutator, running by itself, will
eventually exhaust memory. However, when run concurrently with the Collector, then the joint
system will exhaust memory at some later point, but if the composition is safe, then the execution
traces should be essentially equivalent (bisimilar) up until the time that the first execution fails.
Let us assume that the Mutator blocks on the call to allocate new memory (which is selectSupply
in the Specware derivation). Once memory has been exhausted, then the trace terminates in a
failure state.

With these concepts in mind, we can formalize the notion of bounded safety of two systems. We
define a failure trace of a system Si as a sequence of alternating states and atomic actions of S
terminating in failure:

sti0
a0 !! sti1

a2 !! · · · stik
ak !! fail

Let n denote the size of memory. Define an information order on traces (less-defined-than-or-equal)

tr1 ⊑n tr2 ⇐⇒ ∀(j)(j ∈ [0, length(tr1)) =⇒ stj1
∼= stj2 ∧ . . . ∧ last(tr1) = fail)

We should be able to lift that order to the set of all traces and then generalize the definition
of simulate to allow the simulator to continue beyond the failure of the simulated system. Also
generalize the definition of run to executing with memory of size n.

3

21

initial specification. Each step prescribes how to generate a refinement of the previous
specification.

Each of the following subsections introduce a library refinement or a transformation for
generating refinements, together with some examples. We also discuss how each
technique can automatically generate a formal checkable proof as a byproduct of its
action.

Section 3.6.1 introduces an algorithm theory for solving a problem by means of iterating
a monotone function to a fixpoint. We apply this to finding the graph of live nodes.
Sections 3.6.4, 3.6.5, 3.6.7, and 3.6.8 each introduce a transformation for generating
refinements of the observers and transformers of a coinductive type (usually state).

Coalgebraic refinements simply add further constraints to previously introduced
transformers, rather than producing constructive definitions. It is only at the end that
constructions are given; i.e. that a particular model is chosen. This contrasts with
algebraic style refinement in which constructors are given for types and operators are
inductively defined over the types. All constructions are explicit and immediate.

3.6.1 Algorithm	Design	Theory	for	Fixpoint	Iteration	

There are two classes of garbage collection algorithms:

• Stop-the-world collectors: these are the classical non-concurrent collectors,
where the mutators need to be stopped while the collector works.

• Concurrent collectors: these are the collectors that allow the mutators to keep
working concurrently with the collector (except for very short pauses).

The traditional stop-the-world collectors correspond on the abstract level to the classical
fixed-point theory of Tarski and Kleene, where the live nodes are the least fixpoint of a
monotone function on the graph G. More recently Cai and Paige [CaiPaige89]
published a number of generalizations that are streamlined towards practical algorithmic
implementations of fixpoint computations. In a concurrent setting the graph G is
changing while the Collector is operating, which means (abstractly) that the monotone
function itself is changing during the iteration process. In [Pavlovic10] we developed
general conditions under which the result of the iteration process is a fixpoint of the
initial monotone function but not a least fixpoint. We call this dynamic fixpoint theory,
and it justifies the safety of CGCs.

We paraphrase the main result of Cai and Paige here, since it provides the template for
our algorithm strategy:

Theorem 1 [Cai-Paige89]

22

 Let A be a cpo2 and f: A -> A be a monotone function that is inflationary in r. If
 <s0, s1, s2, ..., sn> is an arbitrary sequence obeying the conditions

r = s0 ,
si < si+1 ≤ f(si) for i < n,
sn = f(sn)

 then sn is the least fixed point of f relative to r. Conversely, when the least fixed point
 is finitely computable, then the sequence will lead to such an sn.

Theorem 1 provides a natural abstraction from workset-based iterative algorithms,
which maintain a workset of change items. At each iteration, a change item is selected
and used to generate the next element of the iteration sequence. The incremental
changes tend to be small and localized, hence this is called the micro-step approach
and the Kleene chain the macro-step approach. All practical collectors use a workset
that records nodes that await marking.

We now derive the overall structure of a garbage collector. The essence of it is the
iterative algorithm for finding a superset of live nodes which we can complement to
obtain a subset of dead nodes to recycle. Letting roots denote the roots of the active
graph together with the head of the supply list, we have

live = lfp f({})
where

f(R) = roots \Union {b | b∈ G.sucs(a) ⋀ ∈ R};
in words, the active nodes are the cumulative closure of the roots under the successor
function in the current graph G.

To derive an algorithm for computing the dead nodes, we simply compute the set of live
nodes and subtract them from the set of all nodes, much like in a sieve algorithm. See
Figure 5. We can compute the set of live nodes by a correct, but naive iterative
algorithm via a Kleene chain; its proof is constructed by instantiating Kleene's proof.

Following Cai and Paige [CaiPaige89], we can construct a more efficient fixpoint
iteration algorithm using a workset defined by

WS = f(WSvar) \ WSvar
 = roots ∪ {b | b∈ G.sucs(a) ⋀ a∈WSvar} \ WSvar

2 A cpo is a partial order that is complete in the sense that every subset with an upper
bound has a least upper bound.

23

Figure 5: Kleene Fixpoint Algorithm

Although this workset definition is created by instantiating a problem-independent
scheme, it has an intuitive meaning: the workset is the set of nodes whose parents have
been reached (and ``marked'' as live), but who themselves have not yet been marked.

SSP = spec
 type State
 op pre : State -> Bool
 op post : State -> State -> Bool
 op p (st:State | pre st): {st':State | post st st'}
end-spec

Mealy = spec
 type State
 type In
 type Out
 op pre : State -> Bool
 op post : State->In->Out->State->Bool
 op p (st:State | pre st)(i:In): {(o,st'):Out*State | post st i o st'}
end-spec

Specification SSP} provides an abstract specification of a state-based problem to solve.
State} is intended as a coinductive type and p} is specified via a precondition on the
input state and a dependently typed postcondition over the input and output states.

A generalization to a Mealy machine is also given: the specified transformer depends
both on the initial state and an input, and produces both an output state and an output
result.

SBFixpointIterationWorksetTheory = spec
 import SSP, StructuredTypes
 op xs: State -> Set X
 type X
 op F : State -> Set X -> Set X

findLFP({})
op findLFP(S) =
 if S ≠ f(S
 then findLFP(f(S))
 else S

24

 axiom F_is_monotone is
 fa(st:State,s1:Set X, s2:Set X)
 s1 subset s2 => (F st s1) subset (F st s2)
axiom fixpoint_solves_p is
 (F st' (xs st')) subset (xs st') => post st st'
end-spec

Specification SBFixpointIterationWorksetTheory provides the structure and sufficient
conditions (sufficient structure) to enable a fixpoint solution to a problem given by SSP.
This formulation differs from the classical Tarski/Kleene/Paige formulation in that the
function F is a monotone function that depends on current state; i.e. in a fixed state it is
a monotone function. Our formulation sets the stage for addressing the issue of
iterating a monotone function over a changing state due to a concurrent actor.

SBFIW_Algorithm = spec
 import SBFixpointIterationWorksetTheory
op WS(st:State): Set X = (F st (xs st)) -- (xs st)
op initialState(st:State): {st':State | xs st' = empty_set}
op nextState(st:State)(x:X): {st':State | xs st' = set_insert(x, xs(st))}
op selectWS (st:State): {(st',ox): State * Option(X) |

 if WS st = empty_set
 then WS st' = WS st
 && ox = None
 else ex(y:X)(y in? WS st
 && WS st' = delete(y, WS st)
 && ox = Some y)}

 op p (st:State | pre st): {st':State | (WS st') = {}
 && (F st' (xs st')) = (xs st')} =
 let st1 = initialState st in f_iterate st1

 op f_iterate (st: State): {st':State | WS st' = {} && (F st' (xs st')) = (xs st')} =
 case selectWS st of
 | (st',None) -> st'
 | (st',Some y) -> f_iterate(nextState st' y)

 theorem correctness_of_p is
 fa (st:State,st':State)
 (pre st && st' = p st => post st st')
end-spec

25

A proof of the correctness theorem is as follows: First, we show that f_iterate satisfies
its postcondition: at termination, we have selectWS st has returned (st',None), which by
the postcondition of selectWS implies that

 WS st = WS st' = empty_set,

which further implies that (F st' (xs st')) = (xs st'). Next, we show that p satisfies its
postcondition: Assume that p starts in state st and terminates in state st’. Then the
postcondition of f_iterate holds in st’:

 WS st' = {} && (F st' (xs st')) = (xs st')

which is also the postcondition of p. Finally, we show that correctness_of_p is indeed a
theorem. Assume that p starts in state st such that pre st, and it terminates in state st’.
Then the postcondition of p holds, but then axiom fixpoint_solves_p implies that post st
st'.

The algorithm theory above is formally expressed as a morphism

fixpoint: SBFixpointIterationWorksetTheory → SBFIW_Algorithm.

We formulate it, prove it, and store it in the library. A slightly more general algorithm
theory and corresponding proof for the general case in which the fixpoint function
changes with each iteration can be found in [Pavlovic10]. The same algorithm scheme
is used, but SBFixpointIterationWorksetTheory is generalized and the proof shows that
the fixpoint algorithm converges to a nonleast fixpoint in general.

The process of applying an algorithm theory is as follows: the goal is to generate a
refinement of a given specification S and we desire to apply algorithm theory fixpoint.
We construct a morphism

m:SBFixpointIterationWorksetTheory → S.

m is called a classification morphism [SmithD9305] because it explicates how S has a
problem that can be treated by fixpoint iteration. To obtain an algorithm design, we then
take the pushout of fixpoint and m. The effect is to instantiate the schematic definitions
in SBFIW_Algorithm to the details of the problem in S.

The next question is how to emit a proof as a by-product of the pushout. One approach
that we prototyped involves locales in Isabelle. A locale is a parametric proof, which
allows it to be instantiated. Since the algorithm theory SBFIW_Algorithm is parametric

26

on SBFixpointIterationWorksetTheory, a locale that captures the reasoning above can
be instantiated when we use a pushout to instantiate SBFIW_Algorithm.

One challenge in formulating a precise abstract specification for workset-based fixpoint
iteration is the inherent nondeterminacy of selecting what to do next from the workset –
the order of selection doesn’t matter as far as the final result is concerned because the
iteration computes a function. However, the semantics of Specware’s MetaSlang
language is classical, in terms of sets and functions, so nondeterministic selection from
a set is not a function and is therefore not allowed. This has been a longstanding
problem in the formal specifications community.

We discovered a novel solution to this problem by exploiting the black-box nature of
coalgebraic types (called cotypes or codatatypes in the literature). For our Garbage
Collection (GC) examples, we require a workset variable which helps control the
iterative process of tracing live nodes. An operation that works directly on the workset
to extract an element cannot be a function. Instead, the trick is (1) to express the
workset as an observation of the State (or Heap) cotype, and (2) to specify a select
operation as a function of the State rather than the workset directly. That way, we can
ultimately refine the select operation to a function that works on the set representation
(e.g. a list) rather than the (abstract) set itself (see the section below on the Observer
Refinement transformation). Solving this problem allows us much more freedom to
develop specifications at the most abstract level possible, which allows simpler
inference calculations and maximizes our implementation freedom.

Example: Finding Live Nodes

We apply the SBFIW_Algorithm algorithm theory to the problem of finding the live nodes
in a heap.

liveasFIP = spec
 import Collector
 op FHeap(H:Heap)(ns:Set Node):Set Node =
 (roots H) \/ (allOutNodes H ns)
 end

live_as_fixpoint = morphism
SBFixpointIterationWorksetTheory -> liveasFIP
 {State ⟼ Heap,
 pre ⟼ findLive_pre,
 post ⟼ findLive_post,
 p ⟼ findLive,

27

 X ⟼ Node,
 obs ⟼ black,
 nextState ⟼ insertBlack,
 F ⟼ FHeap }

A classification morphism can be defined as in the figure. The first four translations of
the morphism identify the SSP problem to solve. Conceptually, this part of the morphism
can be obtained based on simple parsing of the the specification once it is given that
findLive is the problem at hand. Since the goal of findLive is to find a set of Nodes, then
X translates to Node. The abstract observer obs observes the growing set of nodes that
are found to be reachable/live, so its image is the black observer and it is undated using
insertBlack.

Since Specware's morphisms maps symbols to symbols, there is sometimes the need
to construct a definitional extension to provide the requisite symbols for the codomain of
a morphism. Here we extend the specification Collector with a defined function FHeap
that serves as the image of the monotone function for the algorithm theory.

Taking the pushout of live_as_fixpoint and fixpoint SBFixpointIterationWorksetTheory ->
SBFIW_Algorithm essentially yields an extension of Collector with a definition for
findLive.

Collector1 = spec
 import Heap
 ...
 op WS (st:State): Set(Node) = FHeap st (black st) -- black st
 op selectWS (st:State):
 {(st',ox): State * Option(X) |

 if WS st = empty_set
 then WS st' = WS st
 && ox = None
 else ex(y:X)(y in? WS st
 && WS st' = delete(y, WS st)
 && ox = Some y)}

 op findLive(st:State | black st = supply st): {st':State | live st' subset black st' } =
 f_iterate st

 op f_iterate (st:State):State =
 case selectWS st

28

 of (st', None) -> st'
 | (st', Some y) -> f_iterate(nextState st' y)

 theorem correctness_of_p is
 fa (st:State,st':State)
 (black st = supply st && st' = p st && live st' subset black st')
end-spec

Other examples include: finding primes via Sieve of Erastosthenes, reachability in a
graph, dominators, constraint propagation, and many other problems.

Various extensions can be made to the fixpoint algorithm theory.

• Phase-based iteration -- We introduce a flag that signals when the state-based
iteration is ongoing. This allows us to assert that an iteration-relevant invariant is
to be maintained during iteration, and not at other times.

• Dynamic Fixpoint Iteration -- Note that in the formulation of

SBFixpointIterationWorksetTheory, the monotone function F depends on the
state. When the fixpoint algorithm is executing concurrently with an application
that changes the state, then F itself may change. In that situation, what does it
mean to reach a fixpoint? Under mild conditions, we showed in [Pavlovic10] that
the generated fixpoint is a non-least fixpoint of the F based on the initial state. In
a powerset lattice, the dynamic fixpoint generates a supserset of the least
fixpoint. For garbage collection, this means that the collector generates a
superset of live nodes, or conversely, a subset of dead nodes. This is sound,
since it satisfies the safety condition of garbage collection: never collect live
nodes.

3.6.2 Transformations	for	coalgebraic	specifications	

In the following subsections we describe transformations that are specific to coalgebraic
specifications. These are new transformations that we developed for our GC
derivations.

3.6.3 Observer	and	Transformer	Introduction	

During the derivation process, there are various cases in which we need to introduce
new observers and transformers. Sometimes this comes about as part of the normal
development process of a library theory. For example, the domain theory for garbage

29

collection starts with mutable directed graphs as a way to specify heaps, with Graph as
the basic cotype, and the observers and transformers discussed earlier. Graphs are
then extended to Heaps by adding an observer for roots, supply nodes, and ghost
observers for live, dead, and active nodes. New transformers include addRoot (to add
a new root; e.g. a reference from a register) and addSupply (to add a dead node to the
supply list).

One well-formedness obligation in coalgebraic specifications is that each transformer
must specify how it affects all observers. Consequently, when we extend a
specification with a new observer, then care must be taken to incrementally add
coinductive constraints to all transformers that affect it. We extended Specware to
allow incremental accumulation of coinductive constraints:

 refine def newGraph (ni: NewInfo)
 : {H: Heap | roots H = empty_set
 && supply H = initNodeIds ni }

which adds two constraints to the (previously introduced) specification for transformer
newGraph. In words, the roots of a Heap are initialized to the empty set and the supply
nodes are initially all nodes.

Another case that introduces new observers is in algorithm theories. For example, the
state-based fixpoint iteration theory introduces the workset as an observer of state,
together with an invariant definition. As discussed later, the invariant is eagerly
maintained by the Observer Maintenance transformation so that for each transformer,
the coinductive constraint for the observer is automatically calculated (and the
calculation is emitted as a proof of correctness for the refinement).

The Observer Maintenance transformation (see next subsection) is another explicit
mechanism for introducing observers. The arguments to the transformation include a
new observer of state and an invariant that characterizes the observer in terms of the
current value of other observers.

3.6.4 Observer	Maintenance	

Recall that the algorithm theory of the previous section, SBFIW_Algorithm, introduced
an observer WS that is intended as the workset of the fixpoint iteration; i.e. the frontier
of elements that are candidates to add to the growing fixpoint. The observer has a
definition, which allows us to compute its value on demand, but there are situations
where performance can be increased by incrementally maintaining the observer rather
than recomputing it from scratch. The characteristic scenario is the occurrence of WS
in a loop where its value is incremented once per iteration.

30

The Observer Maintenance transformation is applied to a defined observer, say

obsE: State → E,
that we desire to maintain incrementally rather than compute on demand. The
performance improvement comes from a space-time tradeoff: we store the
incrementally computed value of the observer obsE so that, on demand, we can simply
access its value (knowing that the stored value equals the defined value).

In the context of a derivation, the idiom is that we introduce a fresh observer and its
definition

op obsE(st:State):E = (phi st).
Rather than manually enter the coinductive constraints that assert how each
transformer affects this observer, we wish to use the definition to automatically calculate
those constraints and add them. In a Specware metaprogram/derivation-script, we write

 transform S by {maintain(obsE), ... other transformation cmds}

The Observer Maintenance transformation performs the following steps:

1. for each undefined transformer

op t(st:State | pre st)(args:Args):{st':State | post st args st'}

 augment its pre- and post-conditions with the obs invariant as follows:

op t(st:State | pre st && obsE st = e st)(args:Args):
 {st':State | post st args st' && obsE st' = e st'}

2. apply simplification rules in context to normalize it to the coinductive form

 obsE st' = delta st' (obsE st))

 for some function delta:State->E->Ed}.

3. refine the specification of t to

op t(st:State | pre st && obsE st = e st)(args:Args):
 {st':State | post st args st' && obsE st' = delta st' (obsE st)}

31

Note: Step 1 applies only to transformers that are specified but do not yet have a
definition. Once a transformer has a definition in terms of other transformers, then the
definition body presumably maintains the observer invariant by construction.

In garbage collection derivations, the observer maintenance has a variety of uses. One
is to incrementally maintain the workset in the fixpoint iteration that traces the live
nodes.

3.6.4.1 Example:	Maintaining	the	workset	in	a	tracing	algorithm	

Continuing our example from earlier, notice that the algorithm theory has introduced a
new observer, WS, with its definition. The fact that there are frequent calls to this
observer during the iterative loop by selectWS suggests to apply the Observer
Maintenance transformation.

OM1 = transform Collector1 by
 {maintain(WS)
 [... theorems-to-apply ...]}

We extend our derivation script/metaprogram to apply Observer Maintenance to
observer WS in the Collector1 specification, as shown. The optional argument to
maintain(WS) is a list of theorems that can be used in the calculations of the update
codes. More generally, it is a specification of theorems to apply, focusing commands,
and other calculation tools to apply, such as common-subexpression elimination and
simplification.

The transformation first collects all undefined transformers (of the cotype that WS
depends on), and then attempts to calculate incremental update code to maintain the
observer's invariant. We show two examples by way of illustration: insertBlack and
addNode.

To maintain the invariant

WS st = FHeap st (black st) -- black st

the specification for transformer insertBlack

op insertBlack(st :State)(n:NodeId | n in? nodes st):
 {st':State | black st' = insert(n, black st)}

32

is transformed to

op insertBlack(st :State | WS st = FHeap st (black st) -- black st)
 (n:NodeId | n in? nodes st):
 {st':State | black st' = insert(n, black st)

 && WS st' = FHeap st' (black st') -- black st'}

We will need the theorem

theorem distribute_allOutNodes_over_insert is
 fa(G:Graph, n:NodeId, ns:Set NodeId)
 (allOutNodes G (insert(n, ns)) = allOutNodes G ns \/ (outNodes G n))

We then simplify the postcondition on WS st', seeking to derive an incremental,
coinductive form for it. As assumptions, we gather (1) the preconditions, (2) other the
contextual postconditions (on black st'), and (3) any implicit frame conditions (observers
that do not change under the transformer).

 theorem distribute_set_diff_over_union is [a]
 fa(A:Set a,B:Set a,C:Set a)
 ((A \/ B) -- C = (A -- C) \/ (B -- C))

 theorem distribute_set_delete_union2 is [a]
 fa(A:Set a,B:Set a,y:a)
 (~(y in? B) => set_delete(y, A \/ B) = set_delete(y, A) \/ B)

 theorem distribute_set_diff_over_right_insert is [a]
 fa(c:Set a,d:Set a,y:a) (c -- set_insert(y,d) = set_delete(y, c -- d))

Assume: WS st = FHeap st (black st) -- black st)

 && n in? nodes st
 && st' = insertBlack st n
 && black st' = insert(n, black st)
 && roots st' = roots st

Simplify: WS st'

 = { by assumption on WS }

33

 FHeap st' (black st') -- black st'

 = { applying the assumption on black }

 FHeap st' (insert(n, black st)) -- (insert(n, black st))

 = { unfolding the definition of FHeap (from liveasFIP) }

 (roots st') \/ (allOutNodes st' (insert(n, black st))) -- (insert(n, black st))

 = { apply assumption about roots }

 (roots st') \/ (allOutNodes st' (insert(n, black st))) -- (insert(n, black st))

 = { apply assumption about st' }

 (roots st) \/ (allOutNodes (insertBlack st n) (insert(n, black st))) -- (insert(n, black st))

 = { apply theorem allOutNodes_of_insertBlack }

 (roots st) \/ (allOutNodes st (insert(n, black st))) -- (insert(n, black st))

 = { applying distribute_allOutNodes_over_insert }

 ((roots st) \/ (allOutNodes st (black st)) \/ (outNodes st n)) -- (insert(n, black st))

 = { applying distribute_set_diff_over_union }

 ((roots st) \/ (allOutNodes st (black st)) -- (insert(n, black st)))
 \/
 ((outNodes st n) -- (insert(n, black st)))

 = { fold the WS invariant }

 WS st \/ ((outNodes st n) -- (insert(n, black st)))

 = { applying theorem distribute_set_diff_over_right_insert }

 WS st \/ delete(n, (outNodes st n) -- (black st)).

34

As a result of this calculation, we can refine the specification for insertBlack to

op insertBlack(st :State | WS st = FHeap st (black st) -- black st)
 (n:NodeId | n in? nodes st):
 {st':State | black st' = insert(n, black st)
 && WS st' = WS st \/ delete(n, (outNodes st n) -- (black st))'}

We treat this as an atomic action, since we require that no other process/thread can
observe a state in which the invariant on WS is violated. Notice that this is the
essential update underlying Dijkstra’s on-the-fly concurrent mark&sweep algorithm,
which was discovered after many flawed attempts [Dijkstra78]. The essence falls out
by a simple calculation in our setting.

Note that insertBlack is a Collector operation. We also perform Observer Maintenance
on Mutator transformers. Effectively, this requires that the Mutator cooperate with the
Collector in maintaining the workset. We show this in the following calculations for
addNode or setTgt.

3.6.4.2 Example:	Reference	Counting	

As another of the many examples of applying Obsever Maintenance, consider the
maintenance of a reference count observer.

op refcnt(G:Graph)(n:Node):Nat = occs(n,roots G) + inArcCnt G n (arcs G)

and its maintenance with respect to a simple addArc transformer:

op addArc(G:Graph| refcnt G n = occs(n,roots G) + inArcCnt G n (arcs G))
 (x:Node, y:Node) :
 {G’:Graph | nodes G’ = nodes G
 Ù outArcs G’ x = (outArcs G x) + (x®y)
 Ù refcnt G’ n = occs(n,roots G’) + inArcCnt G’ n (arcs G’)}

The simplification of the inserted occurrence of refcnt in the postcondition is

refcnt G’ n = occs(n,roots G’) + inArcCnt G’ n (arcs G’)
 = occs(n,roots GÈ{x®y} + inArcCnt GÈ{x®y} n (arcs GÈ{x®y})

 = if n = y
 then 1 + occs(n,roots G) + inArcCnt G y (arcs G)

35

 else occs(n,roots G) + inArcCnt G y (arcs G)
 = if n = y
 then 1 + (refcnt G n)
 else (refcnt G n).

3.6.4.3 Other	Examples	

We used Observer Maintenance extensively in our GC derivations. It gives rise to
natural data structures, their meaning, and efficient incremental computation. In
particular, the following data structures emerge from Observer Maintenance:

1. Reference Count: reference count, supply
2. Mark&Sweep: workset, root count, supply length, supply
3. Copying Collector: new-space, root count, supply
4. Generational Collector: new-generation, root count, supply

The following two subsections describe generalizations of Observer Maintenance.

3.6.4.4 Generalization	of	Observer	Maintenance:		Conditional	Invariants	

We developed a technique for maintaining conditional invariants. The motivation is that
for efficiency’s sake we want to maintain an invariant during the marking phase, but not
during other phases (e.g. sweeping and when the collector is idle). To our knowledge,
all previous work on transformations to maintain invariants has focused on global state
invariants (which are required to hold in all states at all times). The invariant that
characterizes the workset in the tracing of live nodes only needs to hold during the
Marking phase. Any work done to maintain the workset during sweeping, or when the
Collector is idle, is wasted. Our approach is to have a globally observable flag
marking? that is on exactly during the Marking phase. Then the invariant can be
expressed as a conditional:
 marking? Þ invariant.

Our transformation then calculates how to incrementally maintain the invariant over a
transformer. For each transformer, we specify whether the flag can be assumed on (or
off) for its duration, if knowable at specification-time.

3.6.4.5 Generalization	of	Observer	Maintenance:	Maintaining	an	Inequality	

Consider again the workset invariant:

36

WS st = FHeap st (black st) -- black st)
 = (roots st) \/ (allOutNodes H (black st)) -- black st

The action of a concurrent application will change the heap, with the effect of changing
the set of root nodes and changing the outnodes of various live nodes. This will
typically cause the invariant to be violated.

Various extensions can be made to the Observer Maintenance transformation. In
particular, it is sometimes necessary to maintain an inequality, rather than an equational
invariant. There are two main reasons for weakening equational invariants to
inequation3. The intuition is that the action of a concurrent process/thread can cause
the weakening of an inequation, instead of the outright breaking of an equation.

First, we may not have strong enough lemmas to calculate code to maintain the
equality, but enough to maintain an inequality. Second, we may have strong enough
lemmas to calculate maintenance code for an equation, but it is too expensive to
compute. It may be less expensive to maintain an inequality and then use a residual
check at runtime to eliminate the over-approximative delta (as in Workset case). In
concurrent algorithms, the distinction of the cases is moot. The actions of a concurrent
agent often mean that we can only know and enforce at design-time an inequation.
Related to both of these points, it is often noted that inequalities arise frequently in
concurrent algorithm design. It is common that where an equation is enforceable in a
sequential algorithm, its concurrent variant requires an inequation due to interference
between threads/processes.

A good example of this is the workset in a Concurrent GC. In the sequential/stop-the-
world collector, we can maintain the exact workset given by WS above. In a concurrent
setting, where the Mutator may swing pointers during the process of finding live nodes,
it would be prohibitively expensive to maintain the exact frontier of reachable live nodes.
The only efficient solution is to maintain

 invariant (FHeap st (black st) -- black st) <= WS st

i.e. that we must maintain an upper bound on the frontier of reachable nodes that have
not yet been marked as live.

For example, consider worksets in dynamic fixpoint algorithms. The best we can do in a
dynamic fixpoint is find an overapproximation of the least fixpoint. Consequently, the

3 In Rely-Guarantee this is called stabilization — weakening the invariant so that it is
stable under state changes by the environment.

37

workset, although ideally defined by an equality (set difference), can be weakened to an
inequality; i.e. as long as way can incrementally compute an upper bound on the ideal
WS, then we preserve the property of converging to a (nonleast) fixpoint. This happens
here in the maintenance of WS under the swinging of an arc/ptr - we may leave a dead
node in the WS, resulting in an overapproximation of the currently live nodes. The
prescription for a bounding WS (vs exact equality) should fall out of the overall spec and
the algorithm theory (which introduces the workset).

FD in the dynamic fixpoint setting - conjecture: in a static fixpoint setting, we can use an
upper bound of the workset to converge to a nonleast fixpoint. In a dynamic setting, this
may be necessary for performance reasons (e.g. selectWS which we generalize from a
set to a multiset).

In the Specware collector derivations, we noted the need for both kinds of inequality
maintenance. We found a way to produce the correct effect in the derivations, but not in
the most general way. The correct approach is to generalize the Observer Maintenance
transformation to allow calculation of update code for invariants of the form

 invariant E st <= obs st

where <= is a partial order, and the invariant provides a (upper or lower) bound on the
observer obs. Equational invariants are a special case. The goal of the Observer
Maintenance transformation is to calculate update code that maintains as strong a
bound on the observer as possible, given what is knowable statically (at design-time).

3.6.4.6 Related	Work	

The observer maintenance transformation builds on earlier work on strength reduction
in compilers, finite differencing [Paige82], incrementalization [Liu13]. These previous
transformations work by looking up the update code from pre-computed tables.
Consistent with our generalization of Paige's Finite Differencing transformation
[SmithD9009], we allow the maintenance of invariants over user-defined vocabulary,
since we calculate the update code in the context of the application domain theory; that
is, we use the axioms and theorems of the domain as part of the calculation of update
code. Observer maintenance can be viewed as an adaptation of our generalization of
finite differencing to coalgebraic specifications.

The well-known "tricolor" abstraction invented by Dijkstra et al. [Dijkstra78] arises
naturally as a by-product of a generic (i.e. problem-independent) transformation (and
calculations) for maintaining invariants. The "gray" nodes correspond to the workset

38

that is used to control the fixpoint iteration process. The "black" nodes are the marked
nodes (nodes that are, or were, live), and the white nodes are unmarked nodes. The
necessity for mutator cooperation when assigning a reference (via addArc) falls out via
calculation. The need for a write barrier falls out from the need to perform the FD
increments atomically with their triggering action. Dijsktra's decision to leave newly
allocated nodes white unless their parent is black also falls out by straightforward
calculation.

One point is that there is no need for intricate problem-specific conceptualization and
ad-hoc reasoning during design - the design concepts and inferences are generic in
their outline and are only problem-specific in that they rely on problem-specific
requirements/goals and problem-specific axioms and theorems. That is, the designs
are generic but tailored by generic inference patterns to the specified problem.

3.6.5 Observer	Refinement	

A key problem in formal specifications has been how to refine datatypes from their initial
abstract form to their final concrete form. Typically the abstract form allows simpler
reasoning during the design process, and the concrete form is complex but provides
good performance. Traditionally, refinement processes (in both the imperative and
functional language communities) have focused on refining (or reifying) abstract types
to concrete types. There are well-known techniques for doing that when the abstract
types are defined. However, in the coalgebraic style that we are developing the
abstract cotypes have no definition until the last step of refinement before code
generation. Our breakthrough was realizing that cotypes are characterized by
observers and it is the observers that must be refined. One way to think about this is
that rather than refining the abstract cotype directly, we refine various observations of it,
thereby indirectly refining the cotype. At the last step of refinement, we define the
cotype as a product (record, struct) of the concrete observers via the finalizeCotype
transformation (see later section).

We reduced these insights to practice by defining a simple transformation on
coalgebraic specifications, called observer refinement, which we now summarize.

The context is that we have an existing observer obsE:State®E and we have its effect
on various transformers stated coinductively in their postconditions. We wish to refine
obsE to an observer of a more concrete type, and we do so by introducing a new
observer

 op obsEC:State®EC

39

of a more concrete type EC, together with an invariant that shows how to abstract EC
observations to E observations:

 axiom obsE_invariant is
 obsE st = abs obsEC st

where abs:EC®E is an abstraction function. To make the calculations work it is useful,
maybe necessary, for abs to be a homomorphism from EC to E.

The goal is to eliminate obsE in favor the more concrete observation obsEC. We use
the invariant obsE_invariant to replace obsE everywhere in the postconditions of
transformers and observers, and then simplify.

We implemented the following syntax for observer refinement in a Specware
tactic/metaprogram:

 transform S by {refine(obsE, obsE_invariant), ... simplification rules to use …}

The refine transform calculates the following:

 1. for each transformer t:State®Args®State that is coinductively specified by the
 form

 op t(st:State)(a:Args|pre(st,a)):
 {st':State | ... & obsE st' = upsilon st a (obsE st)}

 2. unfold the def of obsE (i.e. apply the invariant) yielding

 op t(st:State)(a:Args|pre(st,a)):
 {st':State | ... & abs obsEC st' = upsilon st a (abs obsEC st)}

3. then calculate a sufficient condition (since we can strengthen a postcondition
 in a refinement) to get a refined definition of the form

 op t(st:State)(a:Args|pre(st,a)):
 {st':State | ... && obsEC st' = chi st a (obsEC st)}

 for some function chi: State ® Args ® EC ® EC.

40

More generally, we can replace all occurrences of obsE by obsEC in axioms, theorems,
pre/post-conditions, and definition bodies; and then simplify. Later, at code-generation
time, there will be no references to obsE, so it is effectively eliminated in favor of
obsEC.

This transformation is used to reformulate the specification in terms of more concrete
observers. One unexpected fallout of this technique is that we can specify an observer
that extracts an element of a set, which is not possible in a purely algebraic setting.

3.6.5.1 Example:			Refining	the	WorkSet	to	a	WorkList	

In the previous section we applied Observer Maintenance to the Workset observer WS,
which has type

op WS: Graph → Set NodeId.

For the sake of efficiency, we wish to implement WS by a List representation. We
introduce a new observer

op WL: Graph → List NodeId.

and define

 axiom WS_as_List is
 fa(G:Graph) WS G = List2Set (WL G)

where List2Set is a homomorphism from Lists to Sets; that is, we have laws such as

theorem List2Set _Nil is [a]
 (List2Set (Nil) = (empty_set:Set a))

theorem List2Set _Cons is [a]
 fa(y:a,lst:List a) (List2Set (Cons(y,lst)) = set_insert(y, List2Set lst))

theorem List2Set_comprehension is [a]
 fa(p:a->Boolean) (x:a | p}) = List2Set([x:a | p])

theorem List2Set_concat is [a]
 fa(l1:List a, l2:List a) List2Set(l1++l2) = List2Set(l1) ∪ List2Set(l1)

41

We apply Observer Refinement by including a statement

 transform Collector2 by
 { implement(WS,WS_as_List)
 [rl _. List2Set _Nil,
 rl _. List2Set _Cons,
 ...]}

The effect is to

1. replace all occurrences of WS by List2Set∘WL
2. simplify all such occurrences, replacing references-to and updates-of WS

by WL

For example, returning to our simple addArc transformer which maintains the WS
invariant

op addArc(G:Graph | WS G= (roots G È outArcs G (black G))\(black G))
 (x:Node, y:Node) :
 {G’:Graph | nodes G’ = nodes G
 Ù outArcs G’ x = (outArcs G x) + (x®y)
 Ù WS G’ = WS G È {y | xÎblack G Ù yÏblack G}}

the transformation automatically tries to simplify the update to WS as follows:

Assume: fa(G:Graph) WS G = List2Set (WL G)

Simplify: WS G’ = WS G È {y | xÎblack G Ù yÏblack G}

 = { by assumption on WS }

 List2Set(WL G’) = List2Set(WL G) È {y | xÎblack G Ù yÏblack G}

 = { List2Set_comprehension }

 List2Set(WL G’) = List2Set(WL G) È List2Set ([y | xÎblack G Ù yÏblack G])

 = { List2Set_concat }

42

 List2Set(WL G’) = List2Set(WL G ++ [y | xÎblack G Ù yÏblack G])

 ⟸ { Leibniz/substitutivity }

 WL G’ = WL G ++ [y | xÎblack G Ù yÏblack G].

We can then refine the specification to

op addArc(G:Graph) (x:Node, y:Node) :
 {G’:Graph | nodes G’ = nodes G
 Ù outArcs G’ x = (outArcs G x) + (x®y)
 Ù WL G’ = WL G ++ [y | xÎblack & y Ï black] }

which allows us to maintain the workset as a list. In our derivations we go on to
maintain the list as a stack.

The Observer Refinement transformation is used extensively in our GC derivations and
has been critical to obtaining good performance. It allows us to develop domain
specifications and problem formulations in terms of abstract types such as sets and
functions, knowing that we can systematically and correctly refine them to efficient
implementation types.

3.6.5.2 Example:	Extracting	an	Arbitrary	Element	of	a	Set	

Another example illustrates how Observer Refinement solves a long-standing problem
in formal refinement, namely, how to extract an arbitrary element of a set. In the
fixpoint algorithm, a central step is selecting an element from the Workset WS and
finding its outArcs. In a purely functional world the only way to select an element from
a set is essentially to impose a linear order and select the minimum element.
Intuitively, this is should an easy and natural operation, at least on finite structures, and
it provides a good example of the mathematical formalism hindering rather than helping
us. Our approach uses the coalgebraic setting – the Workset WS is an observation of
the State/Graph, which has unknown structure. Under Observer Refinement, we
indirectly refines the structure of State, ultimately allowing us to define a functions that
pulls an element out of the workset in constant time.

The arb observer is specified to return an element from a nonempty workset

op arb(G:Graph | WS G ≠ {}): {n:NodeId | n Î WS G }.

Using the following theorems from the library

43

theorem List2Set_element is [a]
 fa(lst:List a,n:a) n Î List2Set(lst) = (n Î lst)

theorem List_element is [a]
 fa(lst:List a) lst ≠ {} ⇒	first(lst) Î lst

we apply Observer Refinement to refine WS to WL, we get the following calculation:

Assume: WS G = List2Set (WL G),
 WS G ≠ {}
Simplify: n Î WS G

 = { by assumption on WS }

 n Î List2Set(WL G)

 = { by List2Set_element }

 n Î WL G

 ⟸ { List_element }

 WL G ≠ [] ⇒	n = first(WL G)

 = { discharging the antecedent by assumptions }

 n = first(WL G).

So the specification for observer arb is refined to

op arb(G:Graph | WS G ≠ {}): {n:NodeId | n = first(WL G) }.

One way to think of why this works is to consider a cotype State as an initially undefined
implementation state, which has various observers. As we perform observer refinement
steps, we get closer to a definition of State that allows efficient observations and state
transformations. This allows us to start a derivation with very abstraction observers with
unknown implementation, then to incrementally add implementation constraints.

44

3.6.5.3 Related	Work	

Until recently, the only mechanism for refining abstract datatypes in Specware was to
apply library specification morphisms for various datatype refinements; e.g.
Sets_to_Lists, and Maps_to_Lists [Blaine94]. These morphisms entail the need for
quotient types (e.g. Sets are refined to a quotient type over Lists) and predicate
subtypes (e.g. Sets are refined to a predicate subtype of Bags). Observer Refinement
adds another method for refining abstract types that provides more flexibility and leads
to better performance. One difference is that OR only allows the refinement of the
type of an observer, rather than every occurrence of an abstract type.

Observer Refinement is related to datatype refinement as first defined by Hoare in 1972
and subsequently generalized [He86]. In the (similar) data reification of VDM, it is
required that the homomorphism (called the retrieve function) must be surjective. In
other words, each abstract value has at least one concrete representation.

3.6.6 StructureEx	

This transformation eliminates quantifiers in favor of let-bindings and substitutions. It
plays a crucial role in translating logical postconditions into a more functional form. We
developed this transformation and made many extension to handle cases.

3.6.7 FinalizeCotype:		Cotype	Definition	and	Postcondition	Synthesis	

During a derivation, we typically introduce a cotype without a definition, but add
observers to it in subsequent refinement steps.

Observers at any stage in the refinement process come in several flavors. Some
observers have a definition (and so they are eagerly computed when needed). Some
are undefined but are specified by their effect on various transformers. Some
observers have an invariant characterization and are incrementally computed via the
Observer Maintenance transformation. Some are ghost observers and therefore have
no effect on computation, since they exist solely to increase the precision of system
properties.

The finalizeCotype transformation is a packaging of two related transformations: cotype
definition and postconditions synthesis.

3.6.7.1 Transformation:	Cotype	Definition	

The cotype definition transformation introduces a definition for the cotype as a tuple, or
record named fields. It works by collecting the undefined observers that are not ghosts

45

and making them the fields of the tuple. It then gives a definition to each observer as a
field access to the local cotype element (commonly the state).

Refinements of a coalgebraic specification correspond to subclassing. If we refine a
spec Sspec introducing cotype S to a spec TSspec that introduces additional observers
and transformers on S, then any S operator can be applied to any T object. This is
useful for example in refining the Graph/Heap notion of Node to "subclasses" Register,
StackNode, HeapNode, and Supply.

Suppose that in a refined spec later in the derivation of a GC, we have these undefined
or maintained observers

 nodesL : Graph -> List Node
 rootsL : Graph -> List Node
 supply : Graph -> List Node
 WL : Graph -> List Node
 blackCM : Graph -> Map(Node,Boolean)
 tgtIM : Graph -> Map(Node,Map(Index, Node))

We implemented the following syntax for defining a cotype in a Specware
tactic/metaprogram:

 transform S by { finalizeCoType(Graph)}

The transform analyzes the spec S and produces a refined specification with the
following definition:

type Graph= { nodesL : List Node,
 rootsL : List Node,
 supplyL : List Node,
 WL : List Node,
 blackCM : Map(Node, Boolean),
 tgtIM : Map(Node, Map(Index, Node))
 rootCount : Nat

 }
The cotype definition transformation also gives definitions to the observers that are
packaged up in the record (e.g. nodesL, rootsL, etc.),

op nodesL(G:Graph): List Node = G.nodesL
op rootsL(G:Graph): List Node = G.rootsL

46

and so on. The transformation also unfolds calls to them everywhere, eliminating them
as functions. For example

 op addRoot (G: Graph)(n: NodeId | n in? G.nodesL)
 : {G': Graph | G'.rootsL = n :: G.rootsL

&& G'.WStack = if Map.TMApply(G.blackCM, n)
 then G.WStack
 else push(n, G.WStack)
&& G'.rootCount = 1 + G.rootCount }

3.6.7.2 Synthesize	transformers	from	postconditions	

The second part of the finalizeCotype transformation, synthesizes definitions for each
transformer. It does so by translating the coinductive constraints in the postconditions
of transformers into update of the newly-introduced cotype record. Continuing the
example,

op addRoot (G: Graph)(n: NodeId | n in? G.nodesL)
 : {G': Graph | G'.rootsL = n :: G.rootsL

&& G'.WStack = if Map.TMApply(G.blackCM, n)
 then G.WStack
 else push(n, G.WStack)
&& G'.rootCount = 1 + G.rootCount } =

 G << { rootsL = n :: G.rootsL,
 WStack = if Map.TMApply(G.blackCM, n)

then G.WStack
 else push(n, G.WStack),
 rootCount = 1 + G.rootCount}

where G << {f1 = a, f2 = b, …, fn = z} is a Metaslang operation that denotes a record G’
in which each field of G’ is the same as in G, except G’.f1=a, G’.f2=b, …, G.fn=z. The
right-hand sides of the equations are evaluated first, and then the changes are made.
Note that this transformation introduces a functional definition of the state change – it
computes the new state as a function of the old/input state.

47

3.6.8 Globalization	

We implemented a new transformation that performs Globalization. Its effect is to
transform the implicit state in a coalgebraic specification to explicit global/shared state.
It allows us to generate truly imperative code.

Globalization can be described via the following abstract example. Here the cotype
State has been defined as a pair and the observer c and transformers f and g are
single-threaded on State; i.e. they take State as input and produce a State as output.

S = spec
 type State = {a:A, b:B}
 op c(st:State):C = h(st.a, st.b)
 op f(st:State)(arg:Arg): State =
 st << {a = alpha st.a, b = beta st.b}
 op g(st:State)(arg:Arg): State*D =
 (st << {a = gamma st.a, b = delta st.b},
 eps (st.a) (st.b))
end-spec

We implemented the following syntax for globalizing a cotype in a Specware
tactic/metaprogram:

 transform S by {globalize(State)}

The Globalization transformation on a cotype State requires that the type be single-
threaded; i.e. such that there can be no two elements of the type simultaneously live
during execution. Single-threadedness can be detected statically, however, the
finalizeCotype transformation produces single-threaded definitions, and so it provides
suitable input to the Globalization transformation.

Since Specware’s Metaslang language is functional, and has no notion of state, the
Globalization transformation necessarily is a step from Metaslang toward an imperative
language, CommonLisp and C in our case. Its steps are to

1. Introduce a global variable of the cotype, say, var st:State.
2. For each observer and transform, eliminate State as an explicit parameter and

return, and replace local references to state by global references.
3. Replace record updates of the cotype by assignments

Shown in a pseudo-imperative notation, the effect of Globalization on S is

48

 type State = {a:A, b:B}
 var st:State

 op c():C = h(st.a, st.b)
 op f(arg:Arg): Unit =
 (st.a := alpha st.a
 || st.b := beta st.b)

 op g(arg:Arg): D =
 (st.a := gamma st.a
 || st.b := delta st.b
 || return (eps (st.a) (st.b))
)

The effect of Globalization is to introduce a global variable st of cotype State, and all
accesses to st are now to the global (versus access to the parameter as before the
transformation) and changes to fields of State are via destructive assignment rather
than functional copy&modify. Our ad-hoc notation here treats concurrent assignment
statements in an atomic region, in order that invariants are not observed to be violated.

One technical issue arose during implementation. The key assumption of globalization
is that a State parameter occurs single-threaded throughout the specification. As it
turns out, the single-threadedness property holds for the Collector and Mutator
(application-oriented) parts of the specification, but the part of the specification that
gives the theory of States is not single-threaded – States are partially ordered to support
a fixpoint iteration over them. Another counter-example is any theorem about the
evolution of State; e.g. that the dead nodes are monotonically increasing in time, since
this involves a relation between two consecutive states. The solution to this problem is
to slice the specification according to the application-oriented definitions before applying
globalization, keeping only parts of the code that are intended for execution as opposed
to specifying properties of State and State evolution. This entailed the need to enhance
our existing slicing mechanisms to cope with some of the new coalgebraic features of
MetaSlang.

The correctness of this transformation is straightforward in a sequential imperative
language. It is more difficult to prove in a concurrent setting because of possible
interference with State as shared memory. The proof that this transformation works for
concurrent applications depends on assume-guarantee reasoning. As discussed
earlier, for concurrent garbage collection, we start with the specified assumption that the

49

Mutator cannot access the “black/white/gray” information about nodes, which is strictly
Collector data – so the Collector can assume that other processes can only increase the
set of white/dead nodes. Conversely, the Collector cannot modify the set of live/black
nodes – so the Mutator can assume that other processes leave the set of live nodes is
invariant. This general reasoning is what’s needed for the proof that Globalization
applied to concurrent GC is correct.

One improvement to the Globalization Transformation was to generate updates to the
global state that are maximally localized. In CommonLisp parlance, we replaced setq’s
by setf’s. Extra analysis machinery and tables of setters and getters (updates and
accessors) were needed.

A guiding concern in the above explorations has been whether the transformations can
be simple and clean enough to emit proofs as a by-product; i.e. either we prove the
transformation correct once-and-for-all or we generate a proof script justifying each
application. Towards this end, we factored our Globalization transformation into a
sequence of simpler transformations so that each could be extended to emit proofs with
each application. The steps include (1) Linearize the single-threaded state updates (to
get the code in a form that will avoid interference upon translation to sequential
imperative form), (2) record merging (to normalize some expressions), (3) future usage
count analysis (to determine when a value will be no longer used), and (4) translation to
C99 abstract syntax with destructive updates as permitted by analysis. As of the end of
project we had not completed proof-emission enhancements for these
subtransformations.

3.7 Other Transformations

The transformations discussed in previous section were new in Crash and focused on
transforming coalgebraic aspects of our specifications. Several other transformations
were applied and further developed in the project, and we discuss those below.

3.7.1 Simplification	

The most basic optimizing transformation is context-sensitive simplification. The idea is
simple: an expression is simplified by first gathering contextual properties and then
applying conditional equational rules to find a “simpler” form modulo context.

An interesting phenomenon was revealed during the project regarding the difference
between simplification of algebraic/functional expressions and coalgebraic/state-

50

changing expressions. In functional expressions, the simplest form is another
expression that takes less time/space to evaluate (at runtime) to a value. This kind of
simplification is often carried out by symbolic evaluation at design-time, ideally to a
constant. In state-changing expressions, the ideal is minimal state change. This
distinction arose in our derivations and can be illustrated in the following example:

op f(st:State | obs st = 0): {st’:State | obs st’ = obs st}

where obs is a Nat valued observer of State. Our simplifier at first replaced the
postcondition by

obs st’ = 0
which ultimately is implemented as an assignment of 0 to the observer. However, this
“simplification” ignores the information in the constraint that the observer is unchanged
by f, so the postcondition as it stands is in simplest form. It should ultimately be
implemented as a no-op in this case.

In the functional world, values are created from other values. In the side-effecting
world, progress is characterized by making minimal changes to the current state.

3.7.2 Type	Isomorphism

The type isomorphism transformation refines one type T into an isomorphic type T’ with
appropriate translations of operations involving T. We extended it to handle previously
unhandled cases; specifically isomorphisms on types with multiple parameters, such as
Map(a, b) and relaxing the requirement that the types be named types. Also in order to
complete the isomorphism transformation in our garbage collection derivations we
needed to supply extra distributive laws.

3.7.3 Partial	Evaluation

We also implemented a Partial Evaluation transformation. Its effect is as follows.
Suppose that we have a specification that includes a definition

 def f(x:D):R = G[e(0,x), x]

where f is defined by some term G that include a function call to e with a constant
argument (here the constant is 0, but all that matters is that it is a constant). Partial
Evaluation optimizes the definition by evaluating as much of it as possible at design
time – by applying domain theorems to simplify terms. As a very simple example, if e
were simple addition, then we could partially evaluate the expression 0 + x to x,
resulting in (slightly) faster code.

51

3.8 Proof Emitting Transformations

Proof-emitting transformations was a key innovation that we began developing in the
Crash project. Figure 6 illustrates/diagrams our approach to proof-emitting
transformations and their role in generating refinements and proofs. The figure depicts
the action of applying transformation T to specification A. The result is a generated
refinement from A to B, represented by morphism σ. Moreover, the transformation
generates a proof term that can be used to discharge the proof obligation of the
refinement.

Conceptually, we treat a transformation as a mapping from (the abstract syntax of) a
specification A to a triple that includes (1) a specification morphism σ, (2) the
refined/target specification B, and (3) a proof term. The proof term is a summary of the
calculations performed in generating B from A. Specware provides a general proof-
obligation-generator utility that maps a specification morphism, such as σ, to a
Metaslang formula that expresses its proof obligations (i.e. that the axioms of B imply
the axioms of A modulo the translation induced by morphism σ). The intent of the
proof term generated by a transformation is that it can discharge the proof obligations of
the generated morphism.

The goal here is to have an independent proof-checker verify that the proof term
generated by the transformation does indeed prove the obligations generated by the
proof-obligation-generator. One feature of the structure of Figure 6 is that the left-hand
side is independent of the proof-checker. We wanted the freedom to build translators
to any proof-checker that was rich enough to express the Metaslang logic. As an
independent proof-checker we chose Isabelle since we already had a partial translator
from the Metaslang logic of Specware to the Isabelle/HOL logic. The following
subsections describe several of the issues that arose in realizing this overall approach
to generating proof-carrying code.

52

Figure 6: Proof-emitting Transformation

3.8.1 Instrumenting	transformations	to	record	calculation	chains	

We extended many of our library transformations to generate proof terms. During the
course of the project we tried a sequence of approaches to the structure of the proof
terms. Our first attempt was to record the sequence of equations used in a rewrite rule-
based simplification. This was sufficient for several transformations, but couldn’t
handle the proofs involving recursive transformation of terms. Our second approach
was to define transformation-specific datatypes to record transformation steps. After
instrumenting several transformations this way, it became clear that there were many
commonalities and we felt the need (and possibility to define) a uniform representation
of calculations performed by transformations. Our third approach was to develop a
uniform proof representation for all transformations. A portion of the definition of our
proof term specification is:

type ProofInternal =
 | Proof_UnfoldDef (MSType * QualifiedId * MSVars * MSTerm * MSTerm)
 | Proof_EqSubterm (MSTerm * MSTerm * MSType * Path * ProofInternal)
 | Proof_EqSym ProofInternal

Generating Proofs of Refinements

Spec A

Spec B,
proof term

spec
morphism σ

Isabelle
proof
checker

yes/no

Metaslang
formula

translate

generate
proof
obligations
on σ conjecture

translate spec and proof
proof

Transformation t: Spec A � <morphism σ, spec B, proof>

53

 | Proof_EqTrans (MSType * MSTerm * List (ProofInternal * MSTerm))
 | Proof_ImplTrans (MSTerm * ProofInternal * MSTerm * ProofInternal * MSTerm)
 | Proof_ImplEq ProofInternal
 | Proof_Cut (MSTerm * MSTerm * ProofInternal * ProofInternal)
 | Proof_ImplIntro (MSTerm * MSTerm * String * ProofInternal)
 | Proof_Assump (String * MSTerm)
 | Proof_ForallE (Id * MSType * MSTerm * MSTerm* ProofInternal * ProofInternal)
 | Proof_EqTrue (MSTerm * ProofInternal)
 | Proof_Theorem (QualifiedId * MSTerm)
 | Proof_Tactic (Tactic * MSTerm)

where, for example,
• Proof_UnfoldDef (T, qid, vars, M, N) is a proof that fa(vars) M=N at type T by

unfolding the definition of qid,
• Proof_EqSubterm(M,N,T,p,pf) is a proof that M = N : T from a proof pf : M.p =

N.p, where M.p is the subterm of M at path p
• Proof_EqSym(pf) is a proof that N=M from pf : M=N

and so on.

To give a sense of the details, consider the following rewrite steps performed in one of
the Crash derivations:

{ 1: allOutNodes_of_addSupply }
 allOutNodes (addSupply H nid) (Set.set_insert(nid, black H))
—-> allOutNodes H (Set.set_insert(nid, black H))
{ 2: distribute_allOutNodes_over_set_insert }
 allOutNodes H (Set.set_insert(nid, black H))
—-> allOutNodes H (black H) \/ outNodes H nid
{ 3: Set.associative_union }
 roots H \/ (allOutNodes H (black H) \/ outNodes H nid)
—-> (roots H \/ allOutNodes H (black H)) \/ outNodes H nid

which is stored as the following proof term

EqTrans(Bool,
 roots H \/ allOutNodes H (black H) \/ outNodes H nid,
 [Sym(Theorem(Set.associative_union,
 roots H \/ (allOutNodes H (black H) \/ outNodes H nid)
 = roots H \/ allOutNodes H (black H) \/ outNodes H nid)),
 roots H \/ (allOutNodes H (black H) \/ outNodes H nid),
 EqSubterm(roots H \/ (allOutNodes H (black H) \/ outNodes H nid),
 roots H \/ allOutNodes H (Set.set_insert(nid, black H)), Bool, [1],

54

 Sym(Theorem(distribute_allOutNodes_over_set_insert,
 allOutNodes H (Set.set_insert(nid, black H))
 = allOutNodes H (black H) \/ outNodes H nid))),
 roots H \/ allOutNodes H (Set.set_insert(nid, black H)),
 EqSubterm(roots H \/ allOutNodes H
 (Set.set_insert(nid, black H)),
 roots H \/ allOutNodes(addSupply H nid)
 (Set.set_insert(nid, black H)), Bool, [1],
 Sym(Theorem(allOutNodes_of_addSupply,
 allOutNodes(addSupply H nid) (Set.set_insert(nid, black H))
 = allOutNodes H (Set.set_insert(nid, black H))))),
 roots H \/ allOutNodes(addSupply H nid) (Set.set_insert(nid, black H))])

and is then rendered into the Isabelle/Isar proof-script language as
Isabelle/Isar proof script

have subeq100:
 "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid

 = roots H \/ allOutNodes (addSupply H nid) (Set__set_insert(nid, black H))"
 proof -
 have "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid
 = roots H \/ (allOutNodes H (black H) \/ outNodes H nid)"
 proof -
 have symeq95:
 "roots H \/ (allOutNodes H (black H) \/ outNodes H nid)
 = (roots H \/ allOutNodes H (black H)) \/ outNodes H nid"
 proof -
 show "?thesis" by (auto simp only: Set__associative_union)
 qed
 show "?thesis" by (rule symeq95[symmetric])
 qed
 also
 have "... = roots H \/ allOutNodes H (Set__set_insert(nid, black H))"
 proof -
 have subeq97:
 "allOutNodes H (black H) \/ outNodes H nid
 = allOutNodes H (Set__set_insert(nid, black H))"
 proof -
 have symeq96:
 "allOutNodes H (Set__set_insert(nid, black H))
 = allOutNodes H (black H) \/ outNodes H nid”
 proof -
 show "?thesis"

55

 by (auto simp only: distribute_allOutNodes_over_set_insert)
 qed
 show "?thesis" by (rule symeq96[symmetric])
 qed
 show "?thesis" by (rule arg_cong[OF subeq97])
 qed
…
 finally (HOL.trans)
 show "(roots H \/ allOutNodes H (black H)) \/ outNodes H nid
 = roots H \/ allOutNodes (addSupply H nid) (Set__set_insert(nid, black H))" .
 qed

3.8.2 Translator	from	Metaslang	logic	to	Isabelle	logic	

We extended an existing partial translator from Metaslang to Isabelle for two purposes.
One was to translate refinement obligations and the other was to translate our proof
terms into proof scripts that could be checked against the translated proof obligations.

Many aspects of the translation between these two higher-order logics were
straightforward. However, completing this translator turned out to be trickier and take
longer than expected. One key issue was translating Metaslang specs into Isabelle
specs, and a special case is the translation of Metaslang formulas to Isabelle formulas.
This was a source of ongoing difficulties since the Metaslang and Isabelle logics are
similar but have many detailed differences. We worked on resolving two such
differences: since Isabelle does not support predicate subtypes (including dependent
types), we need to include the predicates from such types into the translation of a
Metaslang expression, typically as an antecedent. We explored several variants of
whether the antecedent should be normalized to the top level, or kept locally to preserve
structure.

Another difference is that Isabelle does not support a name translation operation, while
it is a basic operation on Metaslang specifications. This is a difficult feature to handle
since the name translation must be applied recursively through the entire import
structure of a specification. We completed work on handling the name translation
operation on the Metaslang side. Since Isabelle doesn’t have this feature, our
translator from Metaslang to Isabelle had to perform a recursive copy-and-modify on the
entire import structure of a specification and pass the whole structure to Isabelle, rather
than appealing to Isabelle built-in specifications. This work was a part of the larger goal
of supporting the generation of proofs that discharge automatically generated proof
obligations for refinement steps. We continued to work on extending the Observer

56

Maintenance and Observer Implementation transformations to emit proofs at application
time.

Another difference: We worked on improving the generation of Isabelle proofs from
transformation sequences. The proofs include references to particular subterms that get
transformed. These are indicated by their path from the root of the term. However,
translation to Isabelle does not always preserve the term structure. In particular, in
quantified expressions subtype predicates are added which can mess up the
subexpression paths. We made the translation more robust by exploiting the fact that
these predicates are always conjoined at the beginning of a sub-formula. We made
changes to our translator from Specware logic to Isabelle logic to reflect the use of
named predicate subtypes – previously the translation was losing the predicate subtype,
thereby some proofs to fail.

Another difference/change: support type refinement such as occurs during the
finalizeCotype transformation where a previously abstract type is refined to be a record
type. Isabelle requires that type symbols and their definitions be introduced at the same
time, which a refinement system like Specware does not. To support this we introduced
a transformation to explicate the previously-implicit morphism that arises when a type
symbol is defined later than its introduction in a Specware spec. The morphism is
between the spec with the abstract type and the spec with the defined type. The
obligations of the morphism are that the axioms on the abstract type are theorems on
the defined type. In the case of finalizeCotype, the relevant axioms are that the post-
conditions of the state transformers are true given their preconditions. These pre- and
post-conditions are preserved in the final spec so the obligations are trivially true. The
finalizeCotype transformation also provides bodies for the functions specified by pre-
and post-conditions, so we also have the obligation that the bodies satisfy post-
conditions given the pre-conditions, which follows simply given that the bodies are
mechanically derived from the post-conditions.

Another extension: The Specware rewrite engine includes some built-in speculative
transformations such as expanding let bindings and pushing functions inside if-
expressions that may enable the application of the main transformations. We extended
the proof-emission capability to take account

We also revised our approach to a key problem in generating Isabelle proof scripts.
The problem has to do with the straightforward notion of substitutivity:

 if x=y then f(x)=f(y)

57

When we transform an expression f(x) by simplifying its subterm x to y, then we want a
proof that f(x)=f(y). The problem has been identifying to Isabelle which subterms x and
y are equal, since the paths to the subterms are typically modified during our translation
from Specware to Isabelle. Previously we had been explicitly giving the context/path to
x by means of a lambda
 lambda(v)f[v]
to indicate the hole where the subterm x occurs. We found a simpler solution in using
the argCong mechanism of Isabelle, which automatically searches for the subterms x
and y and then infers the desired result f(x)=f(y). This helps in pushing through the
proofs emitted by our finalizeCotype transformation.

Another problem has to do with the handling of conditional rewrites. In addition to
conveying the condition of the rewrite to Isabelle, sometimes the variables are
quantified over a subtype, so the subtype effectively becomes an additional condition.
We extended our translation mechanisms accordingly.

Another problem arises due to the use of speculative rewriting in the rewrite engine.
Some rewrites may not improve the code so they are applied speculatively, and if they
do not enable an improvement, then they are withdrawn and rewriting continues.
Obviously we do not want that backtracking reflected in the generated proof structure,
so we added a mechanism to detect backtracking and to produce a proof script
reflecting the actual path to the transformed results.

Several other improvements to our translation from Specware/Metaslang to Isabelle.
First, the translate construct is used to rename symbols from an imported theory. For
example, the theory of linear orders might have its type renamed `time’ in order to
provide a simple appropriately named theory of time. The translate construct though
caused an exponential blowup of copying in our previous implementation, so we needed
to cache translated imports to avoid duplication. This problem only arose as we
introduced a monad for formalizing the interleaving of threads that we need to specify
and reason about the concurrent execution of mutator and collector. We also fixed
errors in our spec-substitution construct, which was causing problems in translating
proof terms from Metaslang to Isabelle. The solution was to apply substitutions to
specs but not the spec-element terms, but instead to regenerate them, exploiting
context.

We continued to develop and store proofs with theorems for the specs in the Specware
library. The derivations invoke theorems from imported specs to perform rewrites and
the generated Isabelle proof scripts depend on those library proofs.

58

3.8.3 Locales	for	capturing	proofs	of	library	refinements	

 Some refinements are generated by composing a library refinement with an
application-domain specification by a pushout operation (realized by Specware’s
substitute operator). In this case the proofs of the library refinement are expressed in
terms of the domain and codomain symbols, but we want a proof in terms of the
application-domain specification. In other words, we needed a uniform way to generate
proofs when the refinement works by pushout/substitute rather than by the specification-
specific calculations that other transformations use. One approach is to use Isabelle’s
locale mechanism which allows a kind of generic proof that can be instantiated in a way
that mirrors a specification pushout/substitution. Rather than include the details, we
refer the reader to the technical note [Kreitz12] which shows how to develop a locale for
the fixpoint iteration algorithm theory discussed above.

3.8.4 Proof	Script	Generation	

We designed a mechanism to augment the transformations used in the CGC derivations
so that they both generate a refinement and emit proofs. The ISAR interface to Isabelle
provides a format for calculational proofs that clearly reflect the equational reasoning
carried out by our transformations. To illustrate, if we perform a calculation of the form

A = B by rule r1
 = C by rule r2
 = D by rule r3
so A=D.

then we can generate an Isar/Isabelle proof script of the form (where some detail is
elided)

proof
 have "A
 = B" by (… rule r1 …)
 also have "... = C" by (… rule r2 …)
 also have "... = D" by (… rule r3 …)
 finally have : "(A = D)" .
qed

This proof script can then be automatically checked by Isabelle. This means that an
external certifying authority need not trust our transformations. Instead, we will be able
to generate both code and proof (i.e. proof-carrying code), and let the certifiers have the
mathematical evidence that the code meets its requirements, which they can check,

59

independently and cheaply. We have some simple cases working now and plan to
expand coverage to include most, if not all, of the transformations used in the derivation
of our collectors. This process will be spread over several months, since each
transformation must be augmented with code to emit proof scripts in the above form. A
parallel effort is also required to build up the proofs for basic theories in Isabelle and
discharge the theorem in our domain specifications; e.g. we must have a proof of rules
r1, r2, and r3 in the example (which is trivial if they are axioms).

To be clear, Specware’s transformations automatically carry out the calculation, and our
objective for the next month is to have them also automatically generate the
corresponding Isar proof script. This means that each generated refinement also has a
generated proof that discharges its obligations, without having to perform a post-hoc
proof search. The Isar proof script is formulated to put Isabelle on a very tight leash –
its proof steps are tightly controlled, so that it will not get in trouble by attempting to
search. After all, the transformation knows the structure of the calculation, so that is
reflected in the proof script. We believe that this approach to proof generation will be
dramatically more economical than post-hoc verification.

We worked on a general mechanism for generating proof scripts (expressed in the ISAR
dialect of Isabelle) from a derivation script. Since most of our transformations work by
chaining equations, we worked to capture this form of calculation in a generic way.
Some of the details include the need to specify which subterms to perform matching on
so that Isabelle as a proof checker doesn’t need to search, and the need to relate the
results of equational calculation to the implicational proof obligations that are generated
for refinement steps in Specware. Since some of the transformation steps involve
inequalities (versus equations), a next step is to find a way to output proof scripts with
implication chains rather than equation chains; i.e. A⇒B⇒C⇒D, so A⇒D, rather than
the equational chain a=b=c=d, so a=d.

We streamlined the presentation of the proofs in ISAR. A typical calculation is focused
on a subexpression s of a function or axiom e, so the proof should be presented mainly
at the level of s rather than e. The calculated change to s is finally shown to result in
the desired change to e. One problem with emitting proof scripts during specification
transformation is that Isabelle doesn’t support type symbols that are introduced but not
defined. It is a recurring problem that Isabelle wasn’t built to support refinement
processes. We worked on this issue.

We converted over to using Isabelle 2013, which now requires coercions between sets
and predicates (previously they were equal rather than isomorphic). This entailed
change to the proofs of our base libraries as well as changes to our translator from the

60

MetaSlang logic to Isabelle’s logic. We continued to work on coalescing variant theories
in our library, and introduced new specs for bounded natural numbers and integers.
This allows us to specify, say, Nat16 for 16-bit natural numbers, which translates to
uint16 in C. Another aspect of this task is maintaining proofs for all theorems in the
library specifications. The change to Isabelle 2013 entailed some work to re-establish
theorems, mainly by modifying some theorem’s proof tactic. We found that there were
about 10-15 theorems per specification that needed to be reproved.

We also began work on a new abstract syntax for recording proof information at
transformation-time. The goal is to have all transformations in our library record the
calculations and decisions that they make in this proof structure. We would then be
able to uniformly translate from this proof structure (in MetaSlang) into the proof
language of a proof checker (Isabelle for now). We extended our proof language to
include more information in proof objects, such as errors and context. We made the
actual theorem to be proved more explicit in the proof object, which was needed to
support better proof combinators.

3.9 Specware Infrastructure

We extended Specware’s infrastructure in a number of direction to support the
coalgebraic specifications and their refinement.

We improved Specware’s transformation for Isomorphic Type-refinement, so that it
handles patterns. We improved the rewriter's handling of curried functions. We
modified Specware's type-checker algorithm to generate type-coercions, which means
fewer proof obligations are generated. We improved printing of Specware specs and
terms, and improved the efficiency of code generation for both in time and space usage.
We extended the type-checker so it could infer tighter sub-types for the results of ops
with specialized inputs. We added indirection construct to pragma language to allow
proofs to be separated from specs, so the specs are more readable. We improved the
proof obligation generated for a refined op so that it is easier to prove – making the
obligation extensional and including subtype conditions of argument variables.

We implemented a version of function unfolding that works with functions specified
using pre and post-conditions, by combining the postconditions. We also adapted the
common expression abstraction tactic to work properly with assignment statements.

61

3.9.1 Higher-Order	Matching	Algorithm	

We implemented a feature in the higher-order matcher where it avoids generating
subgoals for a subtype mismatch that could be discharged by subtype obligations.
Previously, if the term being matched had an associated subtype obligation, to show the
rule matched, one would have to prove the obligation was true using the rewriter. This
was at best inconvenient. Now we assume that obligations are proved in Isabelle.

We fixed type matching in Specware’s higher-order matcher – a type variable is now
bound to the least supertype of all the types it is matched against. We also made
changes to the Isabelle translator since, in some cases, it was not extracting composite
subtype predicates correctly for nested subtypes. We also needed to rationalize the
ordering of the extracted predicates.

3.9.2 Support	for	calculation	

Support for calculational inference was extended from equational to handle conditional
equations and to handle strengthening of propositions (e.g. the Observer Refinement
calculation above).

3.9.3 Tactic	language	

We also modified the transformation script language to make it simpler to read, write,
parse, and automatically generate scripts. This has allowed us to reformulate several
existing transformations into the following normal form: generate a derivation script and
then run it. This normal form has several advantages:

1. it replaces the writing of arbitrary metaprograms that manipulate abstract syntax,
2. it extends the range of people who can write transformations
3. it prepares the ground for emitting proofs as a by-product of transformation.

We extended the scripting language to support verbatim text for generating into
CommonLisp. This allows us to add Lisp-specific instrumentation, monitoring, and other
support code as an integral part of the derivation script. We fixed the error handling for
transformation moves that fail, so an error message is presented instead of going into
the debugger.

62

3.9.4 Transformation	Support	

We improved Specware’s transformation language machinery so that it is easier to add
new transformations both for spec-level transformations and term-level transformations.
Now, it is only necessary to define the transformation as a function with a suitable type,
without having to add special interface code to the transformation engine.

We added support for user-defined transformations. Previously, adding a new spec
transformation function would involve changes to the transformation language parser.
We have now implemented a scheme whereby the signature of the transformation
function determines the syntax in the transformation language. This makes it much
easier for developers to incorporate new transformations into the transformation
language, especially when the transformation has multiple options and lists of rewrite
rules or functions as arguments. To implement this interpreter capability we had to
augment the code generator to output type information for transformation functions so
its arguments could be interpreted at run-time. As the interpreter has to work with
objects of multiple types, we needed to tag values with their type and provide an
interface to the transformation functions that accepts these tagged values.

The basis of the transformation system extension is to have the signature of the
Specware transformation function determine the syntax of its use in the transformation
language. For example,

 op MSTermTransform.rewrite: Spec -> PathTerm -> RuleSpecs
 -> RewriteOptions -> MSTerm
 type RewriteOptions =
 {trace : Nat, % Trace level 0, 1, 2, 3
 debug? : Bool, % Debug matching of rules
 depth : Nat} % # of rewrites allowed

is the (slightly simplified) signature of a rewrite transformation that transforms the
current term using a list of transformation rules and with three options. The
“MSTermTransform.” qualifier tells Specware that this is a term transformation. The
spec and the term are implicit, i.e. given by the current transformation context. The
syntax for using this in a transformation sequence is, for example:

 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true]
 {trace = 2, debug?= true, depth = 5}

63

where unfold open? is the rule for unfolding the definition of open? and lr thm takes an
equality theorem thm as a left-to-right transformation rule. The system allows for
defaults everywhere so the options between braces can usually be completely omitted,
or any subset can be specified. E.g.

 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true]

or

 rewrite [unfold open?, lr mapFrom_TMApply, lr filter_true] {depth = 5}

or just

 rewrite

which just uses the built-in simplification included in the rewriter without any rewrite
rules.

Previously, allowing all these syntactic options had to be specifically programmed, so
changing an interface, in particular adding options, was a significant amount of work
that required knowledge of the internals of the syntax system. Having the syntax
automatically follow from the signature makes it easy for any Specware user to add new
transformations or extend existing ones.

3.9.5 Tracing	support	

We also made improvements to the transformation system so that it prints out a much
better focused presentation of its (mostly) equational calculations.

3.9.6 Specware	Library	

We coalesced several variants of specifications for finite sets, bags, lists, maps, stacks,
as well as standard refinements of them. We extended the Specware specification
libraries with more proofs of theorems, which are used to support calculations at
program-synthesis time.

We improved the Specware DataStructures library, with an emphasis on pushing the
proofs through Isabelle and fixing any issues revealed in the process. The
DataStructures library defines and refines container data structures, including Sets,
Bags, Maps, etc. We added many Isabelle proofs (including proving quite a few new,
generally useful auxiliary properties). Perhaps the most interesting proofs were those
justifying the correctness of the refinements (expressed as morphisms) of various
structures in terms of the others, many of which make heavy use of 'fold' operations.

64

The library work is still ongoing, but the Sets and Bags libraries are now completely
proven.

We also refurbished many of the specs in the Crash repository, to get them working with
the latest version of Specware and its libraries. We also worked on Specware
documentation, testing, and miscellaneous maintenance tasks and improvements (e.g.,
modernizing the syntax of important specs).

3.10 Generator of imperative code

We looked at the problem of generating imperative code from monadic code using a
state monad, and studied the literature on this subject, particularly in the context of
Haskell. We created a prototype implementation of one approach that involves unfolding
all the monadic functions and simplifying the result to get rid of their overhead and
hand-implementing some low-level functions as assignments. This was largely
successful, with some further work being necessary to remove some remaining
overhead. This transformation required some minor extension to the matching
component of the transformation system to handle a sequential composition pseudo-
function.

However, we are also exploring an alternate approach to achieve the same end. Our
analysis suggests that it is may be more straightforward to perform single-threadedness
analysis on the low-level design and then translate the specifications directly to
imperative code.

Towards a C generator, we are constructing a sequence of specification transformations
that correspond to compiler passes and that are intended to be simple enough that we
can augment them to emit proofs at application time. We completed transformations
for linearizing nested terms in single-threaded state transformer definitions and related
code needed to prepare for globalizing the single-threaded state in our coalgebraic
operations. We made numerous other internal improvements. We worked on issues
related to handling pattern-matching in the compiler – since C doesn’t support patterns
for de/construction, there is no direct translation of this feature of MetaSlang, so special
control mechanisms are needed to handle matches that partially succeed before failure.

We extended earlier work to propagate type information through our abstract syntax
trees so that ambiguous constants (such as 1) can be consistently typed when passed
to C. We made many internal improvements in support of C generation. We worked
to generalize and clean up the transformation sequence that generates C (about 23
transformations), and to develop a compilation specification that allows expressing
some C-specific information: import files, native library types and functions that are
used in the MetaSlang specification, translation of field names, and any special-case

65

definitions. During this period we were able to generate, compile, and run idiomatic C
code on some sample specifications written in our mixed algebraic/coalgebraic style.

3.10.1 Language	Morphisms	

Language morphisms are a generalization and formalization of what had been ad-hoc
features for translation to Isabelle and Haskell. Special ``translate'' pragmas within a
spec can now be used to define language-specific rules for translating Specware types
and ops. These pragmas now have an internal structure that is parsed in a very generic
manner to obtain five kinds of information:

3.10.1.1 Imports	
 This section simply lists a sequence of files to be imported into the generated target
file. For example, a translation to C might include:

-import
 stdlib.h % boilerplate
 linux/udp.h % structures specific to UDP protocol
 mycode.h % interfaces to ad-hoc application-specific code

3.10.1.2 Verbatim	

This section is intended to be used sparingly, but provides an escape mechanism to
insert arbitrary text verbatim into the target file. It is intended to handle ad-hoc problems
that resist a generic solution.

 For example, the * operator in C is a function and can be modeled relatively simply
within Specware, but & is not a function since substitution of equals for equals fails.
There thus is no simple way to target C expressions headed by &, but some special
cases can be handled on an ad-hoc basis by allowing Specware operators to map to C
macros that include &. For example:

-verbatim
 #define atomic_read_at(x) (atomic_read(&x))

Verbatim text may create problems for verification, but it isolates such problems to a
small set of clearly identified operators.

Also, because such verbatim text must appear declaratively within the specs being
used, those that lack such tricks can be known to be free of such problems — there is
no programmatic mechanism secretly including such tricks as part of the translation.

66

3.10.1.3 Translate	

This is the main section, and provides for translation of specware names (for types, ops,
and field references) to target names or terms, along with an indication as to the
location of the target (primitive/syntactic or file location). Translations to complex terms
are implemented as target macros.

-translate
 type Nat.Nat32 -> uint32_t primitive
 op Nat.BVAND32 -> & infix primitive
 type udp_table -> struct udp_table in net/udp.h
 field udp_table.csum -> udp_table.check in net/udp.h
 op Null_ID -> ((Sock_ID) NULL) macro
 op sizeof_udp_hdr -> sizeof (struct udphdr) macro

3.10.1.4 Native	

 This section provides a simpler form of translation where the named type or op is
assumed to translate directly to the same name in the target.

-native
 op ntohs in /drivers/staging/rtl8712/generic.h
 op udp_hdr in linux/udp.h

Language morphism pragmas for any given spec are collected recursively through all
imported specs, making it possible to distribute the language-specific translation rules
for types and ops into the local contexts where they are introduced or defined.
Alternatively, the translations could be handled en-masse by one pragma in the top-
level spec, for example if one wished to have alternative top-level specs with different
rules targetting different compilers.

Future work could easily validate that a type or op declared to be in a target file was at
least nominally present there. With language-specific parsing of the target files. it would
be possible to verify appropriate typing, etc.

3.10.1.5 Slices	

A perennial problem with processing specs has been that each processing context may
be concerned with just some aspects of a spec, requiring ad-hoc code to determine
which elements of the spec to process and which elements to ignore, making such
processing fragile and hard to maintain as Specware evolves.

67

One aspect of this problem is that alternative notions such as defined, executable,
implemented, primitive, hand-coded, etc. have tended to be conflated within such
processing code, sometimes confusingly (and even inappropriately) using the same
tests in contexts where slightly differing ones were needed.

There also were early attempts to create more manageable artifacts by simply
subtracting out undesired portions of a spec, however this led to ill-formed specs that
contained the information of interest but were missing semantically important theorems,
subtype predicates, etc.

Slices provide progress towards a generic solution to this problem by layering filters
over specs to provide ad-hoc tailored views. They leave the spec itself unaltered but
add tables describing which elements of the spec have various desired attributes. Each
particular processing context can then view the spec through such a filter, simplifying
the processing context while avoiding logical problems associated with ill-formed specs.

3.10.2 Concurrency	Support	

We implemented a new AddMutexes transform that is restricted to generating mutexes
for primitive transformers (procedures) that affect an invariant – the effect of the mutex
is to ensure that the invariant is never observed to be violated. Our intention is to first
generate coarse-grain mutexes that produce large but correct atomic regions, then to
introduce concurrency-improving transformations that break large-grain regions
correctly into finer-grain regions.

We are exploring two approaches to formally representing the top-level specification of
a collector and a mutator and proving the safety and progress of their concurrent
execution. Challenges arise due to the natural interference of each component with the
other, and their concurrent execution. To model the interference and relative
noninterference we use rely conditions in the form of transition invariants that each
component assumes about its environment (i.e. the other component). The Collector
assumes that dead nodes are increasing monotonically by the action of the
environment, and the Mutator relies on the invariant that the live nodes on the heap are
isomorphic from moment to moment.

One approach to formalizing these rely conditions and to proving safety and progress
was presented earlier in Section 3. A second approach is based on a monadic
formulation of the mutator and collector as state machines whose execution steps
correspond to atomic actions and whose execution can be given an operational (vs
denotational) semantics via interleaving of the atomic steps. This approach allows us
to specify the system architecture as the concurrent execution of two state machines,
while allowing our existing derivations in Specware to generate the low-level code for
the atomic steps. The monadic structure provides the control structure and interleaving

68

of execution steps. Our ongoing efforts are (a) to reconcile the elegant proofs afforded
by the algebraic approach, with the more automatable monadic approach, and (b) to
complete the specification of the system and link it to our several derivations of garbage
collection algorithms.

We continued to develop and store proofs with theorems for the specs in the Specware
library. The derivations invoke theorems from imported specs to perform rewrites and
the generated Isabelle proof scripts depend on those library proofs. In several
instances we found the need to add conditions to theorems to enable proofs. This then
requires ensuring that the mutator and collector operations have pre/post-conditions
strong enough to discharge those new conditions.

3.11 Flex Seedling

3.11.1 Executable	Prototype	

In order to run tests and experiments early in the project, we started by writing an
executable specification of a simple resolution theorem prover. This simple theorem
employs a saturation algorithm that exhaustively applies binary resolution and factoring
to the input set of clauses until (1) a contradiction is derived (in which case the original
conjecture is proved), or (2) the set of clauses is found to be satisfiable (in which case
the original conjecture is not provable), or (3) a resource limit (provided as input) is
reached (in which case the original conjecture may be provable or not).

As we started testing this simple prover, we confirmed the need, in order to run
sufficiently interesting examples, to extend the simple prover with the following features,
which are quite standard in resolution theorem provers:

• Tautology Removal. A tautology is a clause that includes a literal and its
negation. Tautologies are always true and do not contribute to the proof goal,
and can therefore be safely eliminated as soon as they are generated.

• Subsumption. A clause subsumes another one when the former is more general
than the latter, i.e. the latter can be directly derived from the former. Subsumed
clauses do not contribute to the proof goal and can therefore be safely eliminated
as soon as they are generated – this is forward subsumption, i.e. when a newly
generated clause is subsumed by an old one. Backward subsumption occurs
when a newly generated clause subsumes an old clause: in this case, the old
clause can be safely eliminated while the new clause is retained.

69

• Set of Support. Set-of-support is a technique to restrict binary resolution to only
resolve two clauses picked from two different sets: (1) the set of hypotheses; and
(2) the set consisting of the negated conclusion and of the resolvents generated
so far. The latter is the ‘set of support’. The rationale is that the hypotheses are
expected to be consistent, but contradictory with the negated conclusion: thus,
resolving clauses from the hypotheses should not contribute to the proof goal;
the contradiction must involve the negated conclusion and its descendants.

• Demodulation. Demodulation is a technique to handle equality formulas
efficiently. In principle, equality can be handled by adding appropriate equality
axioms to the hypotheses, but this is generally inefficient because of all the
congruence axioms needed for the functions and predicates that appear in the
hypotheses (given that a resolution prover operates on first-order logic). With
demodulation, equality singleton clauses are used as rewrite rules for terms.

3.11.2 Pre-Filter	Optimization	

With the executable Flex prototype in hand, we proceeded to try and apply various
optimizing transformations to the prototype. All the transformations operated
automatically, but they were manually applied, i.e. we chose which transformations to
apply and the parameters to supply to each transformation application. This was an
exploratory activity, before building facilities to automatically choose the transformations
to apply and the parameters they apply.

As first target for our optimizations, we looked at the unification algorithm of Flex. In
resolution theorem provers, unification is a fundamental procedure that is used as part
of binary resolution: candidate literals to be resolved are unified before being resolved.
Since unification is one of the most heavily used procedures in a resolution theorem
prover, it is a good candidate for optimization.

A pre-filter is a necessary condition for the successful evaluation of some other, more
expensive condition. In this case, the unification operation (“is there a substitution that
makes two terms equivalent?”) can be expensive to compute because it involves
creating possible substitutions and checking consistency of variable assignments. A fast
pre-filter can test whether the skeletons (e.g., the trees of function calls and constants
that appear in the terms, ignoring variables for the moment) of two terms are such that
they might unify. If not, there is no reason to spend the time building up substitutions,
because the unification will ultimately fail. Such strengthening or weakening is important
for other optimizations such as deriving pruning tests in search algorithms.

We explored several versions of a pre-filter for the unification algorithm. In doing this we
tried to simulate what an automatic search algorithm could do when looking for

70

optimizations of this kind. Running test cases showed that some of these generated
pre-filters could lead to significant speed-ups for certain unification problems, whereas
in others the speed-up was less than the added overhead. From this exploration it does
appear that pre-filter optimizations could be automatically derived and proved using a
generate-and-test approach with a fairly naive generation strategy.

We derived a fast-fail pre-filter for unification, using our transformation system. The pre-
filter allows the operation to fail quickly in the common case where the terms being
unified do not match. In particular, it causes unification to fail if the structure of the
terms is such that they could not possibly match, and it does this quickly, without
bothering to build variable substitutions and check them for consistency. If the
attempted unification passes the pre-filter, the full unification algorithm is invoked.

Our derivation of the fast-fail pre-filter for unification consists of a sequence of 6
automated transformations: expand-lets, wrap-branches, simplify-body, strengthen,
drop-function-from-nest, and drop-irrelevant-parameters. Each invocation of a
transformation is short (often just a single line) and produces a new mutually-recursive
set of predicates (usually three predicates: for attempting to unify a term, a variable, and
a list of terms). A typical transform is implemented in a few hundred lines of code and
generates a few hundred lines and code and functional correctness proofs. The
sequence of 6 transformations automatically generates an optimized unification
algorithm that includes a fast-fail pre-filter, along with a proof of functional equivalence
of the optimized version with respect to the original version of the unification algorithm
(i.e. the version without the fast-fail pre-filter optimization).

3.11.3 Finite	Differencing	

Finite differencing, also known as incrementalization, is a well-known program
transformation technique in which results from a previous iteration (loop or recursion)
are cached in a way that accessing their cached values, and updating the cached
values at each iteration, is faster than computing them from scratch.

We implemented a general-purpose finite differencing transformation in our system, and
we applied it to the following two procedures that are part of the Flex prover:

1. The extraction of demodulators from the current set of clauses (this is part of
demodulation, described earlier).

2. The calculation of all resolvents from the cross-product of the current set of
clauses.

As part of this process, we also proved theorems that the finite differencing uses to
simplify the updating expressions, e.g. distributive properties of the operators involved.

71

In the process of applying these finite differencing transformations, we found that the
representation of clause sets as lists made it difficult to use suitable distributivity laws to
optimize the computation (i.e. extract demodulators and calculate resolvents). Thus, we
changed Flex to use a higher-level, more abstract representation of clause sets in terms
of mathematical sets, using an existing library for sets.

We also investigated the following topic. After applying finite differencing to an iterative
computation, often the code maintains the cached information at every iteration,
including the last iteration, which is often unnecessary. In order to eliminate this
inefficiency at the last iteration, we developed a new transformation to restructure a
“while-like” loop (which performs the test at the beginning of each iteration) into a “do-
while-like” loop (which performs the test at the end of each iteration). This results in a
little code duplication, but enables finite differencing to avoid the maintenance of the
cached information at the last iteration, resulting in time improvements.

3.11.4 Declarative	Specification	and	Formal	Refinements	

After experimenting with optimizing and testing the executable Flex specification, we
developed a declarative specification of Flex, with the intent that the executable one be
a refinement of the declarative one. The declarative specification does not include
subsumption, set of support, and similar features. Instead, it includes under-specified
components that can be instantiated to add those features. In particular, the declarative
specification includes an underspecified filter that allows any clause to be dropped
(which is always sound): by suitably instantiating that filter, we can remove tautological
clauses and/or subsumed clauses.

We have developed and proved formal refinements from this high-level declarative
specification of Flex to versions that incorporate domain-specific optimizations like
subsumption, tautology removal, and set-of-support. These specifications and
refinements form the Flex derivation tree. The executable Flex specification described
earlier can be connected via formal refinements, to this derivation tree.

3.11.5 Testing	

To test Flex, we drew tests from the following sources:

• Tests that we built specifically to test certain features.

• Arithmetic and logic puzzles taken from [Pelletier86].

• Tests from [AAR15].

• “Thousands of Problems for Theorem Provers” [TPTP], a large library of theorem
proving problems and proofs, covering a wide range of difficulty, topics, provers,

72

and logics. It is the standard test suite used in the annual automated theorem
prover competition at CADE.

We drew most of the tests from TPTP. Since those tests are written in their own TPTP
format, we developed a translator from the TPTP format to the Flex format, based on
existing translators for other theorem provers that come with TPTP.

Figure 7: TPTP testing

We developed an automated test harness that runs the tests on all the executable
versions of Flex, collecting information such as success/failure, times, number of
clauses processed, and so on.

As part of this test harness, we developed a graphical interface, shown in Figure 7, to
display the Flex derivation tree and the results of running each executable version of

73

Flex on the test suite. The display is updated in real time as the tests run. The interface
includes bar charts to compare the results of the different versions of Flex. The purpose
of the test harness is (1) for Flex to run it autonomously to collect empirical information
that will be used to steer the development of Flex and of its optimizations, and (2) to use
the information collected by the test harness to generate readable tables/reports.

74

4 RESULTS AND DISCUSSION

Figure 8 shows a roadmap of the derivations we performed in this project, with
completed derivations shown in red boxes. Each derivation starts from a common
specification of the Collector. The Reference Count collectors are mainly derived via
Observer Maintenance. The Copying, Generational, and Marking Collectors all stem
from a fixpoint algorithm for tracing live nodes, but differ in their memory model and
many other details. In the following sections, we give more detail of each derivation.

Figure 8: Derivational Family Tree of Collectors

4.1 Generating a Concurrent Mark&Sweep Collector

Figure 9 is a summary of the sequence of transformations in the derivation. The
Mark&Sweep derivation starts with the application of the fixpoint iteration algorithm
theory to generate high-level algorithm for tracing the live nodes. Since the algorithm
theory introduces the Workset observer, it naturally follows to apply Observer
Maintenance on WS. At this point the Graph cotype has been renamed to Heap and
then to Memory. The next eleven steps are optimization transformations that refine
abstract observers, simplify expressions, and introduce new observers to speed up
computation (e.g. rootCount which maintains a count of the number of current roots).

Tracing Collectors

Copying Collectors Marking Collectors

partitioned
memory model

monolithic
memory model

Generational
Collectors

Mark &
Compact

Mark &
Sweep

Collector
Spec

Reference Count
Collectors

maintain count
of predecessors trace the set of live nodes

75

Figure 9: Derivation Structure for a Mark&Sweep Algorithm

At that point, the abstract observers are sufficiently refined that we can gather them and
define the Memory cotype via finalizeCotype, which also synthesizes definitions for any
transformers that were specified by undefined. The type isomorphism transformation is
used to package three observers into one: black (marking bit), payload (data), and
tgtIM (outgoing arcs) become fields of a heap cell. An alternate way to organize
memory is to have a separate marking array and package payload and tgtIM – this
would be accomplished via a different application of the type isomorphism
transformation. The derivation then performs three datatype refinement steps using
library refinements to implement Maps, Stacks, and Sets. Finally, the Globalization
transformation (1) introduces a global variable for Memory that comprises the entire
address space, (2) implements the single-threaded transformers via side-effecting
operations on the global Memory, and (3) introduces mutexes for the bodies of atomic
transformers in the case of a concurrent collector. Lastly, the code is turned over to a
conventional compiler to produce the binary.

�������-I(LNGPF-�0COG(.�
�	������G-MIGDGA"PGL.�
�6�����#OCNRCN�6"G.PC.".AC+�>��
6C-���NC."-C�83C"M� �,�6C-LNSV�
�:�����#OCNRCN�:CDG.C-C.P�LD�M"SIL"B�
�:�����#OCNRCN�:CDG.C-C.P+�P(P�→P(P46�
�:�"���#OCNRCN�:CDG.C-C.P+�L4P�LBCO�→L4P�LBCO46�
�:	����#OCNRCN�:CDG.C-C.P+�NLLPO�→�NLLPO5�
�6	���#OCNRCN�6"G.PC.".AC+�NLLP�L4.P�
�:'���#OCNRCN�:CDG.C-C.P+�.LBCO�→�.LBCO�"GN���
64P���4-MLNP�N".BL-�-4P"PLN�
64P	���G-MIGDS�
�:�����#OCNRCN�:CDG.C-C.P+�O4MMIS�→�O4MMIS5�
�6'����#OCNRCN�6"G.PC.".AC+��O4MMIS�L4.P�
�:�����#OCNRCN�:CDG.C-C.P+�#I"AH�→�#I"AH�6�
�:����#OCNRCN�:CDG.C-C.P+�>��→�>5�→�>�P"AH�
�LP����1G."IGTC�L�SMC�6C-LNS�
�LP	���0CDG.C�G.GP.I"AH�6��W�
4OL�����SMC�4OL-LNMFGO-+�6C-LNS�↔�6C-LNS��
0�:���0"P"�SMC�:CDG.C-C.P+�6"MO�→� CAPLNO�
0�:	��0"P"�SMC�:CDG.C-C.P+��P"AHO�→� CAPLNO�
0�:'��0"P"�SMC�:CDG.C-C.P+��CPO�→�5GOPO�
2��������2IL#"IGTC�6C-LNS�
0����������G-MIGDGA"PGL.O�
�(C.����LBC�2C.CN"PGL.�

76

The derivation in Figure 9 was the result of extended exploration – we have recorded
some 25 folders containing variants of the domain theory and derivation for
Mark&Sweep alone. We list a few of the issues that motivated the search:

1. Formulating the domain theory and problem specification. For example, we
spent several versions exploring the use of sets versus bags, collections (a
weaker version of sets) , or Lists to model arcs. Various problems of refinement
motivated alternative formulations, until we discovered the Observer Refinement
transformation, which allowed us to cleanly use sets (the most natural
formulation).

2. How to handle references – after many alternatives, we settled on unique

Identifiers as the correct abstraction rather than addresses (which is just one
implementation of an identifier) or polymorphic pointer types.

3. Formulating the Fixpoint Algorithm Theory – We developed many variants,

including functional, state-based, and concurrent versions.

4. Organizing Derivations – The GC derivations are complex enough that we
needed to develop techniques for organizing and managing them. For example,
we used a spreadsheet to track the status of observers: introduced, defined,
maintained, ghost, or refined. At each refinement level, this helped to track
which observer postconditions needed to be added when a transformer is
introduced. For another example, we learned to factor refinements into
definitional extensions to aid in composition during refinement. We also
developed a version control strategy of creating new folders for all derivation
information when starting a new approach (hence the 25 versions mentioned for
Mark&Sweep).

5. Performance Issues – Performance profiling motivated many reformulations and

transformations. A simple example is the size of the supply list. Some code
required the size to determine if the collector was thrashing. The Observer
Maintenance transformation was then applied by introducing a new observer,
supplyLength, with the invariant
 supplyLength st = length (supply st)
where st is the state. An open issue in program synthesis is how, in general, to
guide the derivation process to achieve performance (or other nonfunctional)
goals.

77

One other performance improvement required deeper insight and changes. As noted in
an earlier status report, one general lesson about coalgebraic specification and
refinement is the need to distinguish identity and value of the elements of a coalgebraic
type (e.g. the state). This is not a distinction that arises by refinement, but must appear
in formalizing the application domain specification. For heap nodes, this means that we
specify their identity (which typically refines to addresses) and a means for accessing
their current value via their identity. In the past month we realized that this distinction
must also apply to the arcs/pointers as well. At the outset of this project, our concept
was that the heap was specified as a graph where we have a basic observation of the
set of arcs coming out of a node. However, the set structure doesn’t allow the arcs to
acquire identities by refinement. The specification must start with the arcs having an
identity (which refines to address and offset), together with identity-based access. The
set of arcs that go out of a node can be then be computed as an abstraction. This
required a more extensive change to the specification and the derivation structure, but
allowed much better generated code. It flies in the face of the heuristic to state the
initial requirements and domain model in as abstract terms as possible, but we are
learning that the identity/value distinction is fundamental for cotypes.

4.2 Generating a Copying Collector

We also developed a derivation of a Cheney-style copying collector. The overall plan
was to modify the Mark&Sweep derivation, since both algorithm families are based on
an iteration to find the live nodes. Several high-level insights emerged from studying
the algorithm and the concepts necessary to specify and derive it.

1. Copying requires a somewhat more general structure than M&S, which is only
concerned with finding live (versus dead) nodes, whereas a copying collector has
to find and copy arcs/pointers too. We generalized the fixpoint iteration algorithm
to find that reachable graph rather than just the reachable nodes.

2. In exploring the coalgebraic style of specification and refinement, it has become
increasingly clear that early on in the specification/derivation process, one must
specify the distinction between identifiers and their state-based values. The
identifiers may be names, addresses, indices, etc. with the main requirement
being that they uniquely identify some varying quantity. In normal usage, the
identifier remains constant and its value may fluctuate with changing state.
However, in the case of a copying collector, the converse holds: the identifier is
changed and the value remains constant! Underlying a copying collector is a
fundamental algorithm for translating identifiers for a collection of values. This
algorithm will be based on a building a translation table which is a bijection
between old and new identifiers. In copying collectors, the translation table is
typically implemented by forwarding pointers. A particular challenge is building a

78

concurrent version where the identifiers are being simultaneously used by the
Mutator and changed by the Collector. The problems of compaction,
defragmentation, virtual memory, and network address translation require similar
treatment.

3. The safety requirement of a Collector is that its actions should not affect the
Mutator’s data. Mark&Sweep algorithms achieve this by leaving the graph of live
nodes unchanged. However, a copying collector works by changing the
identifier/address of live nodes, so it is, in a sense, changing the Mutator’s data.
A weaker characterization of the safety requirement is needed: the collector
preserves the topology of the heap rather than its exact structure. The heap after
collection is isomorphic to the heap before collection. The isomorphism
between the before- and after- heaps is exactly the translation table that is built
up during copying.

We realized that the crucial invariant of a copying collector is not a state invariant, but a
transition invariant, which is a property over a pair of states and which is required to
hold over all state transitions of a program. The transition invariant for a copying
collector is that the graph of live nodes must remain isomorphic under every transition
effected by the collector. Note that this is not exactly a conditional invariant, rather is a
high-level requirement of any garbage collector. Our previous specification of the
requirements on a mark-and-sweep collector had that the graph of live nodes is simply
preserved by the collector, which is the special case that the isomorphism is simple
equality versus graph isomorphism. The innovative idea we are pursuing is that we
can synthesize the core algorithmic parts of a copying collector by means of enforcing
the isomorphism as a transition invariant. The driver for the maintenance is the change
of identifier (i.e. logical address) that lies at the heart of copying (also for compaction
algorithms).

We modified our derivation script for a Mark&Sweep collector to generate a Cheney-
style Copying collector. At the algorithmic level, the guiding concept is that a copying
collector is a different interpretation of the same abstract design – a fixpoint iteration
controlled by a workset. After that, the enforcement that all collector actions maintain
isomorphism of the live heap produces key copying actions. After that, there is a
similar sequence of optimizing transformations and data structure implementation
refinements.

79

Figure 10: Comparison of M&S and Copying Derivations

A side-by-side comparison of the Mark&Sweep derivation structure with the Copying
Collector derivation is shown in Figure 10. Both are comprised of ~25-30
transformations. Of those about half (15) were copied over unchanged to the new
derivation: of the 25 steps of the copying collector derivation, 1 was new, 3 were
deleted, 15 were used unchanged, and 6 transformation steps were modified to obtain
a copying collector. This level of reuse was a little surprising, but it is an expected
benefit of a refinement approach that is based on highly reusable transformations.

4.3 Generating a Generational Collector

We generated a simple generational garbage collector by modifying our previous
derivation of a Cheney-style copying collector, since a generational collector can be
seen as a one-way copying process – rather than alternating between To-space and
From-space, a generational collector copies from new space to old space. The
technical challenge was to derive the key parts of a generational collector as a result of

�#OI��TDDN�0M--DB4MO�
0&�����.-FMOH4G.�1DPHFL,�(H8NMHL4�H4DO#4HML�
0'������H.N-H(HB#4HML�
��&����APDOSDO��#HL4DL#LBD,�"��
�
�������APDOSDO��D(HLD.DL4�M(�N#V-M#C�
��&����APDOSDO��D(HLD.DL4,�4F4�
��&#���APDOSDO��D(HLD.DL4,�MR4�MCDP�
��'����APDOSDO��D(HLD.DL4,�OMM4P�
��'���APDOSDO��#HL4DL#LBD,�OMM40MRL4�
������APDOSDO��D(HLD.DL4,�LMCDP���
�R4&��5.NMO4�O#LCM.�.R4#4MO�
�R4'���H.N-H(V�
�������APDOSDO��D(HLD.DL4,�PRNN-V��
�������APDOSDO��#HL4DL#LBD,��PRNN-V0MRL4�
������APDOSDO��D(HLD.DL4,�A-#BI�
��+����APDOSDO��D(HLD.DL4,�"�→"�4#BI�
0M4&���2HL#-HWD0M VND��D.MOV�
0M4'���1D(HLD�HLH4�-#BI0���>�
5PM&��� VND�5PM.MONGHP.,��D.MOV�
1 �&��1#4# VND��D(HLD.DL4,��#NP�
1 �'��1#4# VND��D(HLD.DL4,��4#BIP�
1 ����1#4# VND��D(HLD.DL4,��D4P�
3&�������3-MA#-HWD��D.MOV�
1����������H.N-H(HB#4HMLP�
0FDL���0MCD�3DLDO#4HML�

0GDLDV�0MNVHLF�0M--DB4MO�
0&�����.-FMOH4G.�1DPHFL,�(H8NMHL4�H4DO#4HML�
0'������H.N-H(HB#4HML�
��&����APDOSDO��#HL4DL#LBD,�"��
5�&�����#HL4#HL�5PM.MONGHP.,�FO#NG5PM�
�������APDOSDO��D(HLD.DL4�M(�N#V-M#C�
��&����APDOSDO��D(HLD.DL4,�4F4�
��&#���APDOSDO��D(HLD.DL4,�MR4�MCDP�
��'����APDOSDO��D(HLD.DL4,�OMM4P�
��'���APDOSDO��#HL4DL#LBD,�OMM40MRL4�
������APDOSDO��D(HLD.DL4,�LMCDP���
�R4&��5.NMO4�O#LCM.�.R4#4MO�
�R4'���H.N-H(V�
�������APDOSDO��D(HLD.DL4,�PRNN-V��
�
�
��+����APDOSDO��D(HLD.DL4,�"�→"�4#BI�
0M4&���2HL#-HWD0M VND��D.MOV�
�
5PM&��� VND�5PM.MONGHP.,��D.MOV�
1 �&��1#4# VND��D(HLD.DL4,��#NP�
1 �'��1#4# VND��D(HLD.DL4,��4#BIP�
1 ����1#4# VND��D(HLD.DL4,��D4P�
3&�������3-MA#-HWD��D.MOV�
1����������H.N-H(HB#4HMLP�
0FDL���0MCD�3DLDO#4HML�

RLBG#LFDC��.MCH(HDC��#CCDC��CD-D4DC�

80

enforcing the invariant that the heap space remains invariant under Collector and
Mutator operations. We achieved over a 60% reuse of derivation structure between the
Copying and the Generational collectors, enabling a significant productivity increase.

Figure 11: Comparison of Copying and Generational Derivations

4.4 Generating a Reference Count Collector

The reference count on a node n is the number of pointers to n from live nodes. The
key idea underlying the derivation of a reference count collector is to maintain the
reference-count of a node via Observer Maintenance; i.e. to generate code to maintain
the reference count from an invariant. Whenever a pointer is created or changed, the
maintenance code updates the reference count simultaneously. It emerged during this
derivation that the supply of free nodes could also be maintained via an invariant – the
supply is the list of nodes that have reference count of zero. Incremental maintenance
will add a node to the supply whenever its reference count is decremented to zero. In
this way the “algorithm” of reference count collection emerges from the application of

0GDLDV�0MNVHLF�0M--DB4MO�
0&�����.-FMOH4G.�1DPHFL,�(H8NMHL4�H4DO#4HML�
0'������H.N-H(HB#4HML�
��&����APDOSDO��#HL4DL#LBD,�"��
5�&�����#HL4#HL�5PM.MONGHP.,�FO#NG5PM�
�������APDOSDO��D(HLD.DL4�M(�N#V-M#C�
��&����APDOSDO��D(HLD.DL4,�4F4�
��'���APDOSDO��D(HLD.DL4,�MR4�MCDP�
�
�������APDOSDO��D(HLD.DL4,�OMM4P�
��'���APDOSDO��#HL4DL#LBD,�OMM40MRL4�
������APDOSDO��D(HLD.DL4,�LMCDP���
�R4&��5.NMO4�O#LCM.�.R4#4MO�
�R4'���H.N-H(V�
������APDOSDO��D(HLD.DL4,�PRNN-V��
��+����APDOSDO��D(HLD.DL4,�"�→"�4#BI�
0M4&���2HL#-HWD0M VND��D.MOV�
5PM&��� VND�5PM.MONGHP.,��D.MOV�
1 �&��1#4# VND��D(HLD.DL4,��#NP�
1 �'��1#4# VND��D(HLD.DL4,��4#BIP�
1 ����1#4# VND��D(HLD.DL4,��D4P�
3&�������3-MA#-HWD��D.MOV�
1����������H.N-H(HB#4HMLP�
0FDL���0MCD�3DLDO#4HML�

RLBG#LFDC��.MCH(HDC��#CCDC��CD-D4DC�

3DLDO#4HML#-�0M--DB4MO�S'�
0&�����.-FMOH4G.�1DPHFL,�(H8NMHL4�H4DO#4HML�
0'������H.N-H(HB#4HML�
��&����APDOSDO��#HL4DL#LBD,�"��
5�&�����#HL4#HL�5PM.MONGHP.,�FO#NG5PM�
�������APDOSDO��D(HLD.DL4�M(�N#V-M#C�
��&����APDOSDO��D(HLD.DL4,�4F4�
�
��'#���APDOSDO��D(HLD.DL4,�MR4.OBP�
�������APDOSDO��D(HLD.DL4,�OMM4P�
��'���APDOSDO��#HL4DL#LBD,�OMM40MRL4�
������APDOSDO��D(HLD.DL4,�LMCDP���
�R4&��5.NMO4�O#LCM.�.R4#4MO�
�R4'���H.N-H(V�
������APDOSDO��D(HLD.DL4,�PRNN-V�
��+����APDOSDO��D(HLD.DL4,�"�→"�4#BI�
0M4&���2HL#-HWD0M VND��D.MOV�
�
1 �&��1#4# VND��D(HLD.DL4,��#NP�
1 �'��1#4# VND��D(HLD.DL4,��4#BIP�
1 ����1#4# VND��D(HLD.DL4,��D4P�
3&�������3-MA#-HWD��D.MOV�
1����������H.N-H(HB#4HMLP�
0FDL���0MCD�3DLDO#4HML�

81

well-known and highly reusable transformations. A surprising insight from the
reference count derivation is that we could go back and revise the other GC derivations
to treat the supply observer as maintained from an invariant.

The remaining steps in the derivation are mostly the same as those in the derivation of
a Mark&Sweep collector, as shown in Figure 12. The left column shows the steps in a
Mark&Sweep derivation/metaprogram. The right column shows the changes from the
Mark&Sweep derivation to produce a Reference Count collector. The steps in red are
deleted, the steps in green are new, the steps in black are unchanged, and the steps in
blue are modified from their counterparts.

Figure 12: Comparison of M&S and Reference Count Derivations

4.5 Performance Enhancements

We continued our effort to eliminate the generation of garbage by the garbage collector.
The change to the graph formulation based on the distinction of identity and value

1�GA�5/��F�,(BB�:I(G�
,������B!(G#I"C���+#!D�� #MF(#DI�#I�G�I#(D�
,������5#CFB# #:�I#(D�
31����3�+�G.�G�1�#DI�D�D:����5�
�
34����3�+�G.�G�4� #D�C�DI�(�F�NB(���
34����3�+�G.�G�4� #D�C�DI��I!I�
34����3�+�G.�G�4� #D�C�DI��(-I2(��+�
34����3�+�G.�G�4� #D�C�DI��G((I+�
31���3�+�G.�G�1�#DI�D�D:���G((I,(-DI�
34���3�+�G.�G�4� #D�C�DI��D(��+���
1-I���0CF(GI�G�D�(C�C-I�I(G�
1-I���5#CFB# N�
34&���3�+�G.�G�4� #D�C�DI��+-FFBN��
31����3�+�G.�G�1�#DI�D�D:����+-FFBN,(-DI�
34
���3�+�G.�G�4� #D�C�DI���B�:A�
34����3�+�G.�G�4� #D�C�DI���5→�5I�:A�
,(I����.#D�B#O�,(6NF��1�C(GN�
,(I������ #D��#D#I�B�:A,1 �3�
0+(����6NF��0+(C(GF"#+C��1�C(GN�
�64�����I�6NF��4� #D�C�DI��1�F+�
�64�����I�6NF��4� #D�C�DI��5I�:A+�
�64�����I�6NF��4� #D�C�DI��5�I+�
����������B(��B#O��1�C(GN�
����������5#CFB# #:�I#(D+�
,!�D���,(�����D�G�I#(D�

4� �G�D:��,(-DI�,(BB�:I(G�
,������B!(G#I"C���+#!D�� #MF(#DI�#I�G�I#(D�
,������5#CFB# #:�I#(D�
31����3�+�G.�G�1�#DI�D�D:����5�
01�����3�+�G.�G�1�#DI�D�D:���G� :DI �+-FFBN�
34����3�+�G.�G�4� #D�C�DI�(�F�NB(���
34����3�+�G.�G�4� #D�C�DI��I!I�
34����3�+�G.�G�4� #D�C�DI��(-I2(��+�
34����3�+�G.�G�4� #D�C�DI��G((I+�
31���3�+�G.�G�1�#DI�D�D:���G((I,(-DI�
34���3�+�G.�G�4� #D�C�DI��D(��+���
1-I���0CF(GI�G�D�(C�C-I�I(G�
1-I���5#CFB# N�
34&���3�+�G.�G�4� #D�C�DI��+-FFBN��
31����3�+�G.�G�1�#DI�D�D:����+-FFBN,(-DI�
34
���3�+�G.�G�4� #D�C�DI���B�:A�
34����3�+�G.�G�4� #D�C�DI���5→�5I�:A�
,(I����.#D�B#O�,(6NF��1�C(GN�
,(I������ #D��#D#I�B�:A,1 �3�
0+(����6NF��0+(C(GF"#+C��1�C(GN�
�64�����I�6NF��4� #D�C�DI��1�F+�
�64�����I�6NF��4� #D�C�DI��5I�:A+�
�64�����I�6NF��4� #D�C�DI��5�I+�
����������B(��B#O��1�C(GN�
����������5#CFB# #:�I#(D+�
,!�D���,(�����D�G�I#(D�

-D:"�D!�� �C(�# #�� ������ ���B�I���

82

(reported earlier) enables us to treat this problem. In particular we studied how to
preallocate and to reuse memory for the workset (refined to a stack), versus the easier
approach of treating the workset as a Lisp list (with its implicit consing).

A more complex example arises from the way we had been performing stateful updates
to complex structures, such as the heap itself. In a functional/algebraic setting, a map
update typically generates a new map using some newly allocated memory cells and
shared structure with the old map. If the old map is never used, then we can reuse old
cells rather than allocate new cells and thus avoid generating garbage.

Part of our learning curve has been to eliminate this source of inefficiency by switching
from algebraic/functional structures to coalgebraic/imperative structures. We began
extending the Globalization Transformation to generate updates to the global state that
are maximally localized. In Lisp parlance, we replaced setq’s by setf’s. Extra analysis
machinery and tables of setters and getters (updates and accessors) were needed.

4.6 Statistics

The table in Figure 13 records some of the progress made in 2012. We selected
representative Mark&Sweep codes generated at various time points during the year.
Each collector was run against a random-based mutator whose input includes an upper
bounds on the maximum number of nodes in the heap (see row 2 in the table).

The runtime column gives total runtime before the system ran out of memory, including
allocation, pointer-swinging, and collection times. The time spent in garbage collection
is typically on the order of 10-20%.

 runtime gc time runtime gc time runtime gc
time

alloc
n/s runtime gc

time
alloc
n/s

nodes: 1000 10000 100000 1000000

2012

12-Mar >600

25-Apr 138 22

17-May 0.031 0.005 1.6 0.5 38 10.6 29k

18-Jun 0.73 0.007 1.38 0.16 133k

17-Aug 0.04 0.017 1.2 0.22 162k 47.5 2.75 42k

14-Sep 0.09 0.017 1.2 0.28 168k 61 6.6 33k

83

9-Oct 3.9 0.58 292k 99 16 114k

9-Nov 410k 200k
Figure 13: Runtime Measurements

The runtime and GC times however are not a reliable indicator because the mutator
itself changed during the year. The columns labeled Allocation n/s (nodes/second)
provide better indicators of progress. They show the rate at which nodes are allocated
and collected, showing steady progress. By the end of the project, the collection
performance was up to 300k nodes/second for a 1M node memory. There are still
many optimizations that can be applied to further improve performance.

4.7 Proof generation results

We extended the following transformations to emit proofs at application time:
Simplification, Observer Maintenance, Observer Implementation, StructureEx,
finalizeCotype, and others.

Figure 14: Proof-Generation Results (part 1)

84

We made further progress on generating proofs automatically from the various
transformation steps in our Mark&Sweep derivation. We were able to generate proofs
from most of the transformations used in our Mark&Sweep derivation, as shown in
Figure 14 and Figure 15. The left column lists the transformations of the derivation and
the right lines lists the number of lines of Isabelle/ISAR proof script emitted by the
transformation, providing a proof of the correctness of the generated refinement. Most
of the proofs are instance-level proofs, but some are a mix of library proofs (such as the
proof of the algorithm design theory) and instance-level details. The blue counts are a
sum of the counts above, since the corresponding transformation has to recapitulate
previous steps for technical reasons (which we hope to obviate). Overall, the
transformations automatically generate over 33,000 lines of machine-checkable proof
script. This is a major result of the project. We have demonstrated that a derivational
approach to algorithm generation can produce proofs as a by-product and that the
marginal cost of producing those proofs is effectively zero.

Figure 15: Proof Generation Results (part 2)

85

4.8 Flex Seedling

The graph in Figure 16 shows the results of running successive executable versions of
Flex over a representative set of our tests. As more optimizations are applied to Flex,
the number of theorems proved by Flex increases, and the number of theorems not
proved by Flex (due to reaching a timeout) decreases.

Figure 16: Flex test cases

The diagram in shows the derivation tree for Flex, rooted at the top-level declarative
specification.

86

Figure 17: Flex Derivation tree

87

5 CONCLUSIONS

5.1 Synthesizing Concurrent Garbage Collectors

We conclude with some reflections on the synthesis of concurrent garbage collectors.
Perhaps the main contribution of this work is a robust methodology and tool support for
the automated generation of a family tree of programs that are correct-by-construction
and have proofs automatically generated as a by-product of the refinement process. A
remarkable aspect of our derivation trees is that they are mainly built from highly
reusable design theories (e.g. the fixpoint iteration theory applies to a wide range of
problems), transformations, and library refinements. Not only are the design theories
and transformations applicable across domains, but they provide a compelling
explanation of seemingly complex algorithms – Dijkstra’s on-the-fly concurrent
Mark&Sweep algorithm was discovered after many flawed attempts [Dijkstra78], but it
falls our naturally via fixpoint iteration and Observer Refinement. Moreover, it has
been our intention in designing these specifications and transformations that they
require relatively simple calculation sequences to reach useful results. We hope that
the reader is convinced of this by the examples in this report, which are representative.

The goal of the CRASH program has been to develop clean-slate approaches to
enhancing security in a computer host. We have contributed by developing techniques
for recording our calculations and using them to generate checkable proofs of the
correctness of our derivations. Absence of many of the vulnerabilities that are rife in
conventionally produced software (e.g. buffer overflows and null pointer dereferences)
is a checkable feature of our approach. By automating the production of proofs, we
lower the cost of providing high levels of assurance as a normal part of software
development. We demonstrated that a derivational approach to algorithm generation
can produce proofs as a by-product and that the marginal cost of producing those
proofs is effectively zero.

A crucial aspect of software engineering that is rarely addressed in formal approaches
is the cost of code maintenance and evolution. In our formal approach, there should be
no maintenance in the sense of bug fixing, but there will always be a need to adapt to
changing requirements and changing design decisions. Somewhat to our surprise, we
found that having an explicit executable metaprogram to generate code + proof, gave us
an opportunity to explore code evolution at the proper level – in terms of modifying
requirements and modifying design decisions in the metaprogram itself, rather than in

88

informal design discussions and documents. We found that a derivation for one GC
algorithm provided most of the design DNA needed for other GC algorithms. In this
case we were not modifying the problem requirements (which are common and fixed),
but essentially making alternative design choices. In this case the metaprogram
modifications were done manually, but the way is open to more automated approaches.

5.2 Flex Seedling

We believe that the results of this Flex seedling show promise towards the goal of
building a self-adaptive theorem prover.

6 References

[AAR15] Association for Automated Reasoning, Newsletter No. 111, June 2015.
http://www.aarinc.org/Newsletters/111-2015-06.html

[ACL2] The ACL2 Theorem Prover. http://www.cs.utexas.edu/users/moore/acl2

[Blaine94] Blaine, L. and Goldberg, A., DTRE: A Semi-Automatic Transformation
System, in Constructing Programs from Specifications, Ed. B. Moeller, North-Holland,
1991, 165—204.

[CaiPaige89] Cai, J., and Paige, R. Program Derivation by Fixed Point Computation,
Science of Computer Programming 11, 3 (April 1989), 197—261.

[Dijkstra78] Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., and Steffens, E.,
On-the-fly garbage collection: An exercise in cooperation. Communications of the ACM
21, 11 (November 1978), 965—975.

[Green69] Cordell Green “The Application of Theorem Proving to Question-Answering
Systems.” Ph.D. thesis, Stanford University, 1969.

 [He86] He, Hoare, and Sanders, Data Refinement, Refined, 1986

[Liu13] Liu, Y. Systematic Program Design: From Clarity to Efficiency, Cambridge
Univ. Press, 2013

89

[Jacobs97] Jacobs, B., and Rutten, J., A tutorial on (co)algebras and (co)induction.
Bulletin of the European Association for Theoretical Computer Science 62 (1997),
222—259.

[Kleene56] Kleene, S, Introduction to Metamathematics, American Mathematical
Society Press, 1956.

[Kreitz12] Locales for Fixpoint Iteration Algorithm Theory, Kestrel Institute Technical
Report, 2012.

[Mossakowski06] Mossakowski, T., Reichel, H., Roggenbach, M., and Schroeder, L.
Algebraic-coalgebraic specification in CoCasl, J. Logic Algebraic Programming 67
(2006).

[Paige82] Paige, R. and Koenig, S., Finite Differencing of Computable Expressions,
TOPLAS 4(3), 1982, 402-454.

[Pavlovic10] Pavlovic, D., Pepper, P., and Smith, D.R. Formal derivation of concurrent
garbage collectors. In Proceedings of 10th International Conference on Mathematics of
Program Construction (MPC 2010), Springer Verlag LNCS 6120, pp.353—376.

[Pelletier86] Francis Pelletier, "Seventy-Five Problems for Testing Automated Theorem
Provers", Journal of Automated Reasoning, 2(2):191-216, 1986.

[Robinson65] Alan J. Robinson, “A Machine-Oriented Logic Based on the Resolution
Principle.” Journal of the ACM 12(1):23–41, 1965.

[Rothe01] Rothe, J., Tews, H., and Jacobs, B. The coalgebraic class specification
language CCSL, Journal of Universal Computer Science 7, 2 (2001), 175—193.

[Rutten00] Rutten, J. Universal coalgebra: a theory of systems, Theoretical Computer
Science 249, 1 (2000), 3 — 80.

[SmithD15PET] Kimmell, G., Smith, D., Westbrook, E., and Westfold, S. Proof-emitting
transformations, Tech. Rep. KES.U.15.2, Kestrel Institute, 2015.

[SmithD03] Pavlovic, D., Pepper, P., and Smith, D.R. Colimits for concurrent collectors.
In Verification: Theory and Practice: Festschrift for Zohar Manna (2003), N.Dershowitz,
Ed., LNCS 2772, pp.568—597.

90

[SmithD9009] Smith, D.R. KIDS — a semi-automatic program development system,
IEEE Transactions on Software Engineering Special Issue on Formal Methods in
Software Engineering 16, 9 (1990), 1024—1043.

[Specware03] Kestrel Institute, Specware System and documentation, 2003.
http://www.specware.org/.

[SmithD9305] Smith, D.R. Constructing specification morphisms, Journal of Symbolic
Computation, Special Issue on Automatic Programming 15, 5-6 (May-June 1993),
571—606.

[SmithD9302] Smith, D.R. Pushouts preserve conservative extensions: Another proof
of the modularization theorem, Tech. Rep. KES.U.93.1, Kestrel Institute, February 1993.

[SW03] Specware System and documentation, 2003, Kestrel Institute,
http://www.specware.org/

[Tarski:1955] Tarski, A. A lattice-theoretical fixpoint theorem and its applications,
Pacific J. Math. 5, 2 (1955), 285—309.

[TPTP] The “Thousands of Problems for Theorem Provers” Library. http://www.tptp.org

 [Turski87] Turski, W.M., and Maibaum, T.E. The Specification of Computer Programs,
Addison-Wesley, Wokingham, England, 1987.

[Veloso95] Veloso, P.A., and Maibaum, T. On the modularization theorem for logical
specification, Information Processing Letters 53, 5 (1995), 287–—293.

[Whalen02] Whalen, M., Schumann, J., and Fischer, B. Synthesizing certified code, in
Proc. Formal Methods Europe (FME 2002) (Copenhagen, Denmark, 2002), Springer
LNCS 2391, pp.431—450.

[Wos00] Larry wos and Gail W. Pieper, “A Fascinating Country in the World of
Computing – Your Guide to Automated Reasoning”, World Scientific Publishing
Company, 2000.

91

7 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

cpo complete partial order

CRASH Clean-Slate Design of a Secure Host

DARPA Defense Advanced Research Projects Agency

GC Garbage Collector

HACMS High-Assurance Military Systems

VDM Vienna Development Methodology

